Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 44(6): 1299-311, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27234056

RESUMO

Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Células Cultivadas , Memória Imunológica , Interferon gama/metabolismo , Ativação Linfocitária , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Fosforilação Oxidativa
2.
Methods Mol Biol ; 2346: 91-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930980

RESUMO

Exosomes are extracellular vesicles (EVs) containing different biomolecules with biological activity, such as proteins, miRNA, long noncoding RNA, and DNA. EVs are efficient platforms for intercellular communication, especially during immune responses, but also in some pathological contexts, such as tumor cell growth. The precise assessment of EV content is relevant for the selection of specific vesicles with specialized biological activities, whose content is hardly visualized due to their small size. We describe herein a protocol for the determination of the content of individual EVs through microscopy imaging and user-friendly analysis using TIRF microscopy.


Assuntos
DNA/análise , Exossomos/química , Proteínas/análise , RNA/análise , Comunicação Celular , DNA/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Microscopia de Fluorescência , Proteínas/metabolismo , RNA/metabolismo
3.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536205

RESUMO

Understanding the fate of dendritic cells (DCs) after productive immune synapses (postsynaptic DCs) with T cells during antigen presentation has been largely neglected in favor of deciphering the nuances of T cell activation and memory generation. Here, we describe that postsynaptic DCs switch their transcriptomic signature, correlating with epigenomic changes including DNA accessibility and histone methylation. We focus on the chemokine receptor Ccr7 as a proof-of-concept gene that is increased in postsynaptic DCs. Consistent with our epigenomic observations, postsynaptic DCs migrate more efficiently toward CCL19 in vitro and display enhanced homing to draining lymph nodes in vivo. This work describes a previously unknown DC population whose transcriptomics, epigenomics, and migratory capacity change in response to their cognate contact with T cells.


Assuntos
Epigenômica , Transcriptoma , Movimento Celular , Células Dendríticas , Linfonodos , Receptores CCR7 , Sinapses
4.
Nat Commun ; 9(1): 2658, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985392

RESUMO

Interaction of T cell with antigen-bearing dendritic cells (DC) results in T cell activation, but whether this interaction has physiological consequences on DC function is largely unexplored. Here we show that when antigen-bearing DCs contact T cells, DCs initiate anti-pathogenic programs. Signals of this interaction are transmitted from the T cell to the DC, through extracellular vesicles (EV) that contain genomic and mitochondrial DNA, to induce antiviral responses via the cGAS/STING cytosolic DNA-sensing pathway and expression of IRF3-dependent interferon regulated genes. Moreover, EV-treated DCs are more resistant to subsequent viral infections. In summary, our results show that T cells prime DCs through the transfer of exosomal DNA, supporting a specific role for antigen-dependent contacts in conferring protection to DCs against pathogen infection. The reciprocal communication between innate and adaptive immune cells thus allow efficacious responses to unknown threats.


Assuntos
Antígenos/imunologia , Células Dendríticas/imunologia , Vesículas Extracelulares/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Expressão Gênica/imunologia , Células HEK293 , Humanos , Interferons/imunologia , Interferons/metabolismo , Células Jurkat , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/metabolismo , Linfócitos T/virologia , Vírus/imunologia
5.
Front Immunol ; 8: 1854, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312336

RESUMO

Tetraspanins are a family of proteins with four transmembrane domains that associate between themselves and cluster with other partner proteins, conforming a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs). These TEMs constitute macromolecular signaling platforms that regulate key processes in several cellular settings controlling signaling thresholds and avidity of receptors. In this study, we investigated the role of CD9, a tetraspanin that regulates major biological processes such as cell migration and immunological responses, in two mouse models of colitis that have been used to study the pathogenesis of inflammatory bowel disease (IBD). Previous in vitro studies revealed an important role in the interaction of leukocytes with inflamed endothelium, but in vivo evidence of the involvement of CD9 in inflammatory diseases is scarce. Here, we studied the role of CD9 in the pathogenesis of colitis in vivo. Colitis was induced by administration of dextran sodium sulfate (DSS), a chemical colitogen that causes epithelial disruption and intestinal inflammation. CD9-/- mice showed less severe colitis than wild-type counterparts upon exposure to DSS (2% solution) and enhanced survival in response to a lethal DSS dose (4%). Decreased neutrophil and macrophage cell infiltration was observed in colonic tissue from CD9-/- animals, in accordance with their lower serum levels of TNF-α, IL-6, and other proinflammatory cytokines in the colon. The specific role of CD9 in IBD was further dissected by transfer of CD4+ CD45RBhi naive T cells into the Rag1-/- mouse colitis model. However, no significant differences were observed in these settings between both groups, ruling out a role for CD9 in IBD in the lymphoid compartment. Experiments with bone marrow chimeras revealed that CD9 in the non-hematopoietic compartment is involved in colon injury and limits the proliferation of epithelial cells. Our data indicate that CD9 in non-hematopoietic cells plays an important role in colitis by limiting epithelial cell proliferation. Future strategies to repress CD9 expression may be of therapeutic benefit in the treatment of IBD.

6.
Front Cell Dev Biol ; 4: 107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27734015

RESUMO

Mitochondria regulate multiple cell processes, including calcium signaling, apoptosis and cell metabolism. Mitochondria contain their own circular genome encoding selected subunits of the oxidative phosphorylation complexes. Recent findings reveal that, in addition to being maternally inherited, mitochondria can traverse cell boundaries and thus be horizontally transferred between cells. Although, the physiological relevance of this phenomenon is still under debate, mitochondria uptake rescues mitochondrial respiration defects in recipient cells and regulates signaling, proliferation or chemotherapy resistance in vitro and in vivo. In this review, we outline the pathophysiological consequences of horizontal mitochondrial transfer and offer a perspective on the cellular and molecular mechanisms mediating their intercellular transmission, including tunneling nanotubes, extracellular vesicles, cellular fusion, and GAP junctions. The physiological relevance of mitochondrial transfer and the potential therapeutic application of this exchange for treating mitochondrial-related diseases are discussed.

7.
Nat Commun ; 7: 13588, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882925

RESUMO

Exosomes are vesicles secreted to the extracellular environment through fusion with the plasma membrane of specific endosomes called multivesicular bodies (MVB) and mediate cell-to-cell communication in many biological processes. Posttranslational modifications are involved in the sorting of specific proteins into exosomes. Here we identify ISGylation as a ubiquitin-like modification that controls exosome release. ISGylation induction decreases MVB numbers and impairs exosome secretion. Using ISG15-knockout mice and mice expressing the enzymatically inactive form of the de-ISGylase USP18, we demonstrate in vitro and in vivo that ISG15 conjugation regulates exosome secretion. ISG15 conjugation triggers MVB co-localization with lysosomes and promotes the aggregation and degradation of MVB proteins. Accordingly, inhibition of lysosomal function or autophagy restores exosome secretion. Specifically, ISGylation of the MVB protein TSG101 induces its aggregation and degradation, being sufficient to impair exosome secretion. These results identify ISGylation as a novel ubiquitin-like modifier in the control of exosome production.


Assuntos
Citocinas/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Autofagia , Células HEK293 , Humanos , Células Jurkat , Macrófagos , Camundongos , Camundongos Knockout , Linfócitos T , Ubiquitina Tiolesterase/metabolismo , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA