Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(1): 663-676, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36661530

RESUMO

Earliness in crop plants has a vital role in prevention of heat-induced drought stress and in combating global warming, which is predicted to exacerbate in the near future. Furthermore, earliness may expand production into northern areas or higher altitudes, having relatively shorter growing season and may also expand arable lands to meet global food demands. The primary objective of the present study was to investigate quantitative trait loci (QTLs) for super-earliness and important agro-morphological traits in a recombinant inbred line (RIL) population derived from an interspecific cross. A population of 114 RILs developed through single-seed descent from an interspecific cross involving Pisum sativum L. and P. fulvum Sibth. et Sm. was evaluated to identify QTLs for super-earliness and important agro-morphological traits. A genetic map was constructed with 44 SSRs markers representing seven chromosomes with a total length of 262.6 cM. Of the 14 QTLs identified, two were for super-earliness on LG2, one for plant height on LG3, six for number of pods per plant on LG2, LG4, LG5 and LG6, one for number of seeds per pod on LG6, one for pod length on LG4 and three for harvest index on LG3, LG5, and LG6. AA205 and AA372-1 flanking markers for super-earliness QTLs were suggested for marker-assisted selection (MAS) in pea breeding programs due to high heritability of the trait. This is the first study to map QTLs originating from P. sativum and P. fulvum recently identified species with super-earliness character and the markers (AA205 and AA372-1) linked to QTLs were valuable molecular tools for pea breeding.

2.
Sci Rep ; 12(1): 1611, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102187

RESUMO

The concept of 'crop ideotype' is coined as a desirable plant model expected to better perform for seed yield, oils and other useful characteristics when developed as a cultivar, and it consists of two major approaches, namely, (i) 'defect elimination', that is, integration of disease resistance to a susceptible genotype from a resistant genotype and (ii) 'selection for yield' by improving yield after crosses between desirable parents. For consideration of these approaches, here we introduced an ideotype in kabuli chickpea (Cicer arietinum L.) which is high-yielding, extra-large-seeded, and double- or multi-podded, has high plant height and imparipinnate-leafed traits, and is heat tolerant and resistant to ascochyta blight [Ascochyta rabiei (Pass.) Labr.], which causes considerable yield losses, via marker-assisted selection. F3 and F4 lines were evaluated for agro-morphological traits divided into six classes, namely, (i) imparipinnate-leafed and single-podded progeny, (ii) imparipinnate-leafed and double-podded progeny, (iii) imparipinnate-leafed and multi-podded progeny, (iv) unifoliolate-leafed and single-podded progeny, (v) unifoliolate-leafed and double-podded progeny, (vi) unifoliolate-leafed and multi-podded progeny. F3:4 lines having 100-seed weight ≥ 45 g and double- or multi-podded traits were additionally assessed for resistance to ascochyta blight using molecular markers including SCY17590 and CaETR-1. Superior lines having higher values than their best parents were determined for all studied traits indicating that economic and important traits including yield and seed size in chickpea could be improved by crossing suitable parents. Imparipinnate-leafed and multi-podded plants had not only the highest number of pods and seeds per plant but also the highest yield. On the other hand, imparipinnate-leafed and single podded progeny had the largest seed size, followed by imparipinnate-leafed and double-podded progeny. Multi-podded plants produced 23% more seed yield than that of single-podded plants, while multi-podded plants attained 7.6% more seed yield than that of double-podded plants. SCY17590 and CaETR-1 markers located on LG4 related to QTLAR2 and QTLAR1 were found in 14 lines among 152 F3:4 lines. Six superior lines were selected for being double- or multi-podded, imparipinnate-leafed, suitable for combine harvest, heat-tolerant, and resistant to ascochyta blight, and having both of two resistance markers and extra-large seeds as high as 50-60 g per 100-seed weight. Resistance alleles from two different backgrounds for resistance to ascochyta blight were integrated with double- or multi-podded kabuli chickpea lines having high yield, extra-large seeds, high plant height, imparipinnate-leaves and high heat tolerance, playing a crucial role for future demands of population and food security. These approaches seem to be applicable in ideotype breeding for other important crop plants.

3.
Plants (Basel) ; 9(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987937

RESUMO

The development and validation of different types of molecular markers is crucial to conducting marker-assisted sesame breeding. Insertion-deletion (InDel) markers are highly polymorphic and suitable for low-cost gel-based genotyping. From this perspective, this study aimed to discover and develop InDel markers through bioinformatic analysis of double digest restriction site-associated DNA sequencing (ddRADSeq) data from 95 accessions belonging to the Mediterranean sesame core collection. Bioinformatic analysis indicated the presence of 7477 InDel positions genome wide. Deletions accounted for 61% of the InDels and short deletions (1-2 bp) were the most abundant type (94.9%). On average, InDels of at least 2 bp in length had a frequency of 2.99 InDels/Mb. The 86 InDel sites having length ≥8 bp were detected in genome-wide analysis. These regions can be used for the development of InDel markers considering low-cost genotyping with agarose gels. In order to validate these InDels, a total of 38 InDel regions were selected and primers were successfully amplified. About 13% of these InDels were in the coding sequences (CDSs) and in the 3'- and 5'- untranslated regions (UTRs). Furthermore, the efficiencies of these 16 InDel markers were assessed on 32 sesame accessions. The polymorphic information content (PIC) of these 16 markers ranged from 0.06 to 0.62 (average: 0.33). These results demonstrated the success of InDel identification and marker development for sesame with the use of ddRADSeq data. These agarose-resolvable InDel markers are expected to be useful for sesame breeders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA