Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928146

RESUMO

Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.


Assuntos
DNA Polimerase gama , DNA Mitocondrial , Camundongos Knockout , Mutação , Ubiquitina-Proteína Ligases , Animais , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteômica/métodos , Proteoma/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
2.
Glia ; 71(5): 1176-1196, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36594399

RESUMO

Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. While neuronal contribution to FXS has been extensively studied in both animal and human-based models of FXS, the roles of astrocytes, a type of glial cells in the brain, are largely unknown. Here, we generated a human-based FXS model via differentiation of astrocytes from human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and characterized their development, function, and proteomic profiles. We identified shortened cell cycle, enhanced Ca2+ signaling, impaired sterol biosynthesis, and pervasive alterations in the proteome of FXS astrocytes. Our work identified astrocytic impairments that could contribute to the pathogenesis of FXS and highlight astrocytes as a novel therapeutic target for FXS treatment.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Astrócitos/metabolismo , Proteômica , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Ciclo Celular , Colesterol/metabolismo
3.
Brain Behav Immun Health ; 31: 100656, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37484197

RESUMO

Animal disease models are important for neuroscience experimentation and in the study of neurodegenerative disorders. The major neurodegenerative disorder leading to motor impairments is Parkinson's disease (PD). The identification of hereditary forms of PD uncovered gene mutations and variants, such as loss-of-function mutations in PTEN-induced putative kinase 1 (Pink1) and the E3 ubiquitin ligase Parkin, two proteins involved in mitochondrial quality control, that could be harnessed to create animal models. However, to date, such models have not reproducibly recapitulated major aspects of the disease. Here, we describe the generation and phenotypic characterization of a combined Pink1/Parkin double knockout (dKO) rat, which reproducibly exhibits PD-relevant abnormalities, particularly in male animals. Motor dysfunction in Pink1/Parkin dKO rats was characterized by gait abnormalities and decreased rearing frequency, the latter of which was responsive to levodopa treatment. Pink1/Parkin dKO rats exhibited elevated plasma levels of neurofilament light chain and significant loss of tyrosine hydroxylase expression in the substantia nigra pars compacta (SNpc). Glial cell activation was also observed in the SNpc. Pink1/Parkin dKO rats showed elevated plasma and reduced cerebrospinal levels of alpha-synuclein as well as the presence of alpha-synuclein aggregates in the striatum. Further, the profile of circulating lymphocytes was altered, as elevated CD3+CD4+ T cells and reduced CD3+CD8+ T cells in Pink1/Parkin dKO rats were found. This coincided with mitochondrial dysfunction and infiltration of CD3+ T cells in the striatum. Altogether, the Pink1/Parkin dKO rats exhibited phenotypes similar to what is seen with PD patients, thus highlighting the suitability of this model for mechanistic studies of the role of Pink1 and Parkin in PD pathogenesis and as therapeutic targets.

4.
Front Mol Neurosci ; 15: 852368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359570

RESUMO

Neurogenerative disorders, such as Alzheimer's disease (AD), represent a growing public health challenge in aging societies. Tauopathies, a subset of neurodegenerative disorders that includes AD, are characterized by accumulation of fibrillar and hyperphosphorylated forms of microtubule-associated protein tau with coincident mitochondrial abnormalities and neuronal dysfunction. Although, in vitro, tau impairs axonal transport altering mitochondrial distribution, clear in vivo mechanisms associating tau and mitochondrial dysfunction remain obscure. Herein, we investigated the effects of human tau on brain mitochondria in vivo using transgenic htau mice at ages preceding and coinciding with onset of tauopathy. Subcellular proteomics combined with bioenergetic assessment revealed pathologic forms of tau preferentially associate with synaptic over non-synaptic mitochondria coinciding with changes in bioenergetics, reminiscent of an aged synaptic mitochondrial phenotype in wild-type mice. While mitochondrial content was unaltered, mitochondrial maximal respiration was impaired in synaptosomes from htau mice. Further, mitochondria-associated tau was determined to be outer membrane-associated using the trypsin protection assay and carbonate extraction. These findings reveal non-mutant human tau accumulation at the synapse has deleterious effects on mitochondria, which likely contributes to synaptic dysfunction observed in the context of tauopathy.

5.
J Vis Exp ; (167)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33522500

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta. Gait abnormalities, including decreased arm swing, slower walking speed, and shorter steps are common in PD patients and appear early in the course of disease. Thus, the quantification of motor patterns in animal models of PD will be important for phenotypic characterization during disease course and upon therapeutic treatment. Most cases of PD are idiopathic; however, the identification of hereditary forms of PD uncovered gene mutations and variants, such as loss-of-function mutations in Pink1 and Parkin, two proteins involved in mitochondrial quality control that could be harnessed to create animal models. While mice are resistant to neurodegeneration upon loss of Pink1 and Parkin (single and combined deletion), in rats, Pink1 but not Parkin deficiency leads to nigral DA neuron loss and motor impairment. Here, we report the utility of FTIR imaging to uncover gait changes in freely walking young (2 months of age) male rats with combined loss of Pink1 and Parkin prior to the development of gross visually apparent motor abnormality as these rats age (observed at 4-6 months), characterized by hindlimb dragging as previously reported in Pink1 knockout (KO) rats.


Assuntos
Análise da Marcha , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Marcha , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Substância Negra/patologia , Ubiquitina-Proteína Ligases/metabolismo , Gravação em Vídeo
6.
Sci Rep ; 11(1): 3738, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580123

RESUMO

HIV-related neurocognitive impairment (NCI) may increase the risk of death. However, a survival disadvantage for patients with NCI has not been well studied in the post-combination antiretroviral therapy (cART) era. Specifically, limited research has been conducted considering the reversible nature and variable progression of the impairment and this area demands further evaluation. We performed multivariable Cox proportional hazards modeling to assess the association between baseline NCI (global T scores) and mortality. A joint modeling approach was then used to model the trajectory of global neurocognitive functioning over time and the association between neurocognitive trajectory and mortality. Among the National NeuroAIDS Tissue Consortium's (NNTC) HIV-infected participants, we found a strong negative association between NCI and mortality in the older age groups (e.g., at age = 55, HR = 0.79; 95% CI 0.64-0.99). Three neurocognitive sub-domains (abstraction and executive functioning, speed of information processing, and motor) had the strongest negative association with mortality. Joint modelling indicated a 33% lower hazard for every 10-unit increase in global T scores (HR = 0.67; 95% CI 0.56-0.80). The study identified older HIV-infected individuals with NCI as a group needing special attention for the longevity of life. The study has considerable prognostic utility by not only predicting mortality hazard, but also future cognitive status.


Assuntos
Disfunção Cognitiva/mortalidade , Disfunção Cognitiva/fisiopatologia , Infecções por HIV/mortalidade , Adulto , Antirretrovirais/uso terapêutico , Cognição/fisiologia , Disfunção Cognitiva/virologia , Estudos de Coortes , Bases de Dados Factuais , Função Executiva/fisiologia , Feminino , HIV/metabolismo , HIV/patogenicidade , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Neurocognitivos/mortalidade , Transtornos Neurocognitivos/fisiopatologia , Transtornos Neurocognitivos/virologia , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Estados Unidos/epidemiologia
7.
Dev Neurobiol ; 79(4): 370-386, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31050203

RESUMO

Although it has been recognized that energy metabolism and mitochondrial structure and functional activity in the immature brain differs from that of the adult, few studies have examined mitochondria specifically at the neuronal synapse during postnatal brain development. In this study, we examined the presynaptic mitochondrial proteome in mice at postnatal day 7 and 42, a period that involves the formation and maturation of synapses. Application of two independent quantitative proteomics approaches - SWATH-MS and super-SILAC - revealed a total of 40 proteins as significantly differentially expressed in the presynaptic mitochondria. In addition to elevated levels of proteins known to be involved in ATP metabolic processes, our results identified increased levels of mitoNEET (Cisd1), an iron-sulfur containing protein that regulates mitochondrial bioenergetics. We found that mitoNEET overexpression plays a cell-type specific role in ATP synthesis and in neuronal cells promotes ATP generation. The elevated ATP levels in SH-SY5Y neuroblastoma cells were associated with increased mitochondrial membrane potential and a fragmented mitochondrial network, further supporting a role for mitoNEET as a key regulator of mitochondrial function.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Proteômica
8.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624650

RESUMO

Herein we present major updates to the National NeuroAIDS Tissue Consortium (NNTC) database. The NNTC's ongoing multisite clinical research study was established to facilitate access to ante-mortem and post-mortem data, tissues and biofluids for the neurohuman immunodeficiency virus (HIV) research community. Recently, the NNTC has expanded to include data from the central nervous system HIV Antiretroviral Therapy Effects Research (CHARTER) study. The data and biospecimens from CHARTER and NNTC cohorts are available to qualified researchers upon request. Data generated by requestors using NNTC biospecimens and tissues are returned to the NNTC upon the conclusion of requestors' work, and this external, experimental data are annotated and curated in the publically accessible NNTC database, thereby extending the utility of each case. A flexible and extensible database ontology allows the integration of disparate data sets, including external experimental data, clinical neuropsychological and neuromedical testing data, tissue pathology and neuroimaging data.


Assuntos
Complexo AIDS Demência , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Adulto , Bancos de Espécimes Biológicos , Pesquisa Biomédica , Feminino , Infecções por HIV , Humanos , Internet , Masculino , Pessoa de Meia-Idade , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA