Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Rapid Commun Mass Spectrom ; 36(13): e9296, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289456

RESUMO

RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104‰, δ18 O: +39 to +155‰, and δ15 NSP : -4 to +20‰. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15 NSP , an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.


Assuntos
Óxido Nitroso , Calibragem , Espectrometria de Massas/métodos , Óxido Nitroso/análise , Isótopos de Oxigênio/análise , Padrões de Referência
2.
Rapid Commun Mass Spectrom ; 34(15): e8836, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32430945

RESUMO

RATIONALE: Unravelling the biogeochemical cycle of the potent greenhouse gas nitrous oxide (N2 O) is an underdetermined problem in environmental sciences due to the multiple source and sink processes involved, which complicate mitigation of its emissions. Measuring the doubly isotopically substituted molecules (isotopocules) of N2 O can add new opportunities to fingerprint and constrain its cycle. METHODS: We present a laser spectroscopic technique to selectively and simultaneously measure the eight most abundant isotopocules of N2 O, including three doubly substituted species - so called "clumped isotopes". For the absolute quantification of individual isotopocule abundances, we propose a new calibration scheme that combines thermal equilibration of a working standard gas with a direct mole fraction-based approach. RESULTS: The method is validated for a large range of isotopic composition values by comparison with other established methods (laser spectroscopy using conventional isotopic scale and isotope ratio mass spectrometry). Direct intercomparison with recently developed ultrahigh-resolution mass spectrometry shows clearly the advantages of the new laser technique, especially with respect to site specificity of isotopic substitution in the N2 O molecule. CONCLUSIONS: Our study represents a new methodological basis for the measurements of both singly substituted and clumped N2 O isotopes. It has a high potential to stimulate future research in the N2 O community by establishing a new class of reservoir-insensitive tracers and molecular-scale insights.

3.
Rapid Commun Mass Spectrom ; 34(20): e8858, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32548934

RESUMO

The isotopic composition of nitrous oxide (N2 O) provides useful information for evaluating N2 O sources and budgets. Due to the co-occurrence of multiple N2 O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2 O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2 O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2 O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2 O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2 O production and reduction processes. More recently, process-based N2 O isotopic models have been developed for natural abundance and 15 N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2 O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2 O isotope community will continue to advance our understanding of N2 O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.

4.
Rapid Commun Mass Spectrom ; 33(2): 165-175, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30304571

RESUMO

RATIONALE: Biochar amendments often decrease N2 O gas production from soil, but the mechanisms and magnitudes are still not well characterized since N2 O can be produced via several different microbial pathways. We evaluated the influence of biochar amendment on N2 O emissions and N2 O isotopic composition, including 15 N site preference (SP) under anaerobic conditions. METHODS: An agricultural soil was incubated with differing levels of biochar. Incubations were conducted under anaerobic conditions for 10 days with and without acetylene, which inhibits N2 O reduction to N2 . The N2 O concentrations were measured every 2 days, the SPs were determined after 5 days of incubation, and the inorganic nitrogen concentrations were measured after the incubation. RESULTS: The SP values with acetylene were consistent with N2 O production by bacterial denitrification and those without acetylene were consistent with bacterial denitrification that included N2 O reduction to N2 . There was no effect of biochar on N2 O production in the presence of acetylene between day 3 and day 10. However, in the absence of acetylene, soils incubated with 4% biochar produced less N2 O than soils with no biochar addition. Different amounts of biochar amendment did not change the SP values. CONCLUSIONS: Our study used N2 O emission rates and SP values to understand biochar amendment mechanisms and demonstrated that biochar amendment reduces N2 O emissions by stimulating the last step of denitrification. It also suggested a possible shift in N2 O-reducing microbial taxa in 4% biochar samples.

5.
Mass Spectrom Rev ; 36(2): 135-160, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-25869149

RESUMO

Natural abundance ratios of isotopocules, molecules that have the same chemical constitution and configuration, but that only differ in isotope substitution, retain a record of a compound's origin and reactions. A method to measure isotopocule ratios of nitrous oxide (N2 O) has been established by using mass analysis of molecular ions and fragment ions. The method has been applied widely to environmental samples from the atmosphere, ocean, fresh water, soils, and laboratory-simulation experiments. Results show that isotopocule ratios, particularly the 15 N-site preference (difference between isotopocule ratios 14 N15 N16 O/14 N14 N16 O and 15 N14 N16 O/14 N14 N16 O), have a wide range that depends on their production and consumption processes. Observational and laboratory studies of N2 O related to biological processes are reviewed and discussed to elucidate complex material cycles of this trace gas, which causes global warming and stratospheric ozone depletion. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:135-160, 2017.


Assuntos
Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Óxido Nitroso/análise , Animais , Archaea/química , Bactérias/química , Fungos/química , Humanos , Nitrificação , Isótopos de Nitrogênio/análise , Esgotos/análise , Solo/química , Água/análise
6.
Rapid Commun Mass Spectrom ; 32(15): 1207-1214, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729051

RESUMO

RATIONALE: Despite a long history and growing interest in isotopic analyses of N2 O, there is a lack of isotopically characterized N2 O isotopic reference materials (standards) to enable normalization and reporting of isotope-delta values. Here we report the isotopic characterization of two pure N2 O gas reference materials, USGS51 and USGS52, which are now available for laboratory calibration (https://isotopes.usgs.gov/lab/referencematerials.html). METHODS: A total of 400 sealed borosilicate glass tubes of each N2 O reference gas were prepared from a single gas filling of a high vacuum line. We demonstrated isotopic homogeneity via dual-inlet isotope-ratio mass spectrometry. Isotopic analyses of these reference materials were obtained from eight laboratories to evaluate interlaboratory variation and provide preliminary isotopic characterization of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and site preference (SP ) values. RESULTS: The isotopic homogeneity of both USGS51 and USGS52 was demonstrated by one-sigma standard deviations associated with the determinations of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and SP values of 0.12 mUr or better. The one-sigma standard deviations of SP measurements of USGS51 and USGS52 reported by eight laboratories participating in the interlaboratory comparison were 1.27 and 1.78 mUr, respectively. CONCLUSIONS: The agreement of isotope-delta values obtained in the interlaboratory comparison was not sufficient to provide reliable accurate isotope measurement values for USGS51 and USGS52. We propose that provisional values for the isotopic composition of USGS51 and USGS52 determined at the Tokyo Institute of Technology can be adopted for normalizing and reporting sample data until further refinements are achieved through additional calibration efforts.

7.
Environ Sci Technol ; 51(24): 14083-14091, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29182319

RESUMO

The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N2O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N2O were surveyed to isotopocule analysis, and its 15N site preference (SP) and δ18O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N2O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N2O production. N2O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ18O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N2O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N2O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N2O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.


Assuntos
Desnitrificação , Esterco , Óxido Nitroso , Bactérias , Compostagem , Microbiologia do Solo
8.
Rapid Commun Mass Spectrom ; 30(24): 2635-2644, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27676138

RESUMO

RATIONALE: Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. METHODS: The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N2 O separation by gas chromatography before N2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. RESULTS: The δ17 O, δ18 O, and Δ17 O values increased with increasing sample size, although the δ15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ18 O, Δ17 O, and δ15 N values, results that are not inferior to those from other systems using gold tube or gold wire. CONCLUSIONS: An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision and sample throughput (23 min per sample on average), and minimal manual treatment. Copyright © 2016 John Wiley & Sons, Ltd.

9.
Rapid Commun Mass Spectrom ; 30(23): 2487-2496, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27605461

RESUMO

RATIONALE: In the last few years, the study of N2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope ratio mass spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). METHODS: The ammonium nitrate (NH4 NO3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ Î´15 Nα - δ15 Nß ) and bulk (δ15 Nbulk  = (δ15 Nα  + Î´15 Nß )/2) isotopic composition of N2 O against the international standard for the 15 N/14 N isotope ratio (AIR-N2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH4 NO3 on the N2 O site preference were studied using static and dynamic decomposition techniques. RESULTS: The validity of the NH4 NO3 decomposition technique to link NH4+ and NO3- moiety-specific δ15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N2 O was confirmed. However, the accuracy of this approach for the calibration of δ15 Nα and δ15 Nß values was found to be limited by non-quantitative NH4 NO3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO3- or NH4+ nitrogen atom into the α or ß position of the N2 O molecule. CONCLUSIONS: The study reveals that the completeness and reproducibility of the NH4 NO3 decomposition reaction currently confine the anchoring of N2 O site-specific isotopic composition to the international isotope ratio scale AIR-N2 . The authors suggest establishing a set of N2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. Copyright © 2016 John Wiley & Sons, Ltd.

10.
Environ Sci Technol ; 50(7): 3537-44, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26967120

RESUMO

We performed laboratory incubation experiments on the degradation of gaseous phase carbonyl sulfide (OCS) by soil bacteria to determine its sulfur isotopic fractionation constants ((34)ε). Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, and Cupriavidus isolated from natural soil environments. The (34)ε values determined were -3.67 ± 0.33‰, -3.99 ± 0.19‰, -3.57 ± 0.22‰, and -3.56 ± 0.23‰ for Mycobacterium spp. strains THI401, THI402, THI404, and THI405; -3.74 ± 0.29‰ for Williamsia sp. strain THI410; and -2.09 ± 0.07‰ and -2.38 ± 0.35‰ for Cupriavidus spp. strains THI414 and THI415. Although OCS degradation rates divided by cell numbers (cell-specific activity) were different among strains of the same genus, the (34)ε values for same genus showed no significant differences. Even though the numbers of bacterial species examined were limited, our results suggest that (34)ε values for OCS bacterial degradation depend not on cell-specific activities, but on genus-level biological differences, suggesting that (34)ε values are dependent on enzymatic and/or membrane properties. Taking our (34)ε values as representative for bacterial OCS degradation, the expected atmospheric changes in δ(34)S values of OCS range from 0.5‰ to 0.9‰, based on previously reported decreases in OCS concentrations at Mt. Fuji, Japan. Consequently, tropospheric observation of δ(34)S values for OCS coupled with (34)ε values for OCS bacterial degradation can potentially be used to investigate soil as an OCS sink.


Assuntos
Bactérias/metabolismo , Óxidos de Enxofre/metabolismo , Enxofre/metabolismo , Biodegradação Ambiental , Fracionamento Químico , Japão , Microbiologia do Solo , Isótopos de Enxofre , Fatores de Tempo
11.
Anal Chem ; 87(1): 477-84, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25439590

RESUMO

Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols.

12.
Rapid Commun Mass Spectrom ; 29(9): 891-900, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26377018

RESUMO

RATIONALE: The oxygen exchange fraction between soil H(2)O and N(2)O precursors differs in soils depending on the responsible N(2)O-producing process: nitrification or denitrification. This study investigated the O-exchange between soil H(2)O and N(2)O precursors in a green tea field with high N(2)O emissions. METHODS: The rainwater δ(18)O value was measured using cavity ring-down spectrometry (CRDS) and compared with that of soil water collected under the tea plant canopy and between tea plant rows. The intramolecular (15)N site preference in (ß) N(α) NO (SP = δ(15)N(α) - δ(15)N(ß)) was determined after measuring the δ(15)N(α) and δ(15)N(bulk) values using gas chromatography/isotope ratio mass spectrometry (GC/IRMS), and the δ(18) O values of N(2)O and NO(3)(-) were also measured using GC/IRMS. RESULTS: The range of δ(18)O values of rainwater (-11.15‰ to -4.91‰) was wider than that of soil water (-7.94‰ to -5.64‰). The δ(18)O value of soil water at 50 cm depth was not immediately affected by rainwater. At 10 cm and 20 cm depths of soil between tea plant rows, linear regression analyses of δ(18)O-N(2)O (relative to δ(18)O-NO(3)(-)) versus δ(18) O-H(2)O (relative to δ(18)O-NO(3)(-)) yielded slopes of 0.76-0.80 and intercepts of 31-35‰. CONCLUSIONS: In soil between tea plant rows, the fraction of O-exchange between H(2)O and N(2)O precursors was approximately 80%. Assuming that denitrification dominated N(2)O production, the net (18)O-isotope effect for denitrification (NO(3)(-) reduction to N(2)O) was approximately 31-35‰, reflecting the upland condition of the tea field.


Assuntos
Camellia sinensis/química , Nitratos/química , Isótopos de Oxigênio/análise , Chuva/química , Solo/química , Água/química , Agricultura , Camellia sinensis/metabolismo , Desnitrificação , Japão , Espectrometria de Massas , Nitrificação
13.
Environ Microbiol ; 16(10): 3168-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24650173

RESUMO

The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations.


Assuntos
Reatores Biológicos/microbiologia , Desnitrificação , Óxido Nitroso/metabolismo , Aerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Desnitrificação/genética , Processos Heterotróficos , Hidroxilamina/metabolismo , Nitrificação , Oxirredução , Transcriptoma
14.
Rapid Commun Mass Spectrom ; 28(17): 1883-92, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25088132

RESUMO

RATIONALE: Dissolved oxygen (DO) concentration is a key parameter of nitrous oxide (N2O), a greenhouse gas, emitted from wastewater treatment systems. No study of stable isotopes has described N2O production during conventional activated sludge (CAS) treatment under different DO concentrations. METHODS: Concentrations and isotope ratios, including intramolecular site preference of (15)N in NNO (SP), of N2O were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS) for samples from seven points in a wastewater treatment plant (WWTP) operated with three aeration conditions. The δ(15)N values of NH4(+) and the δ(15)N and δ(18)O values of NO3(-) were measured using IRMS. RESULTS: Aeration tank water was supersaturated with N2O. The highest value, 3700 nmol kg(-1), was observed at the aeration tank end and in settled sludge under the lowest aeration condition. About 0.03% of the influent NH4(+) was emitted as gaseous N2O at the lowest aeration condition. The conversion rate was 0.14% under the highest aeration condition. The SP values were significantly higher at the middle and end of the aeration tanks under the highest aeration condition, but were nearly zero or slightly negative under lower aeration conditions. CONCLUSIONS: Under the highest aeration condition, NH2OH oxidation (nitrification) was the main contributor to N2O production at about 90% and 57%, respectively, at the aeration tank middle and end. At other sampling points, 55-63% of the N2O was produced by bacterial NO2(-) reduction (nitrifier-denitrification) with a lower nitrification contribution. For all sampling points in the lower aeration experiments, NO2(-) reduction was a major N2O production pathway.

15.
Rapid Commun Mass Spectrom ; 28(18): 1995-2007, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25132300

RESUMO

RATIONALE: In recent years, research and applications of the N2O site-specific nitrogen isotope composition have advanced, reflecting awareness of the contribution of N2O to the anthropogenic greenhouse effect, and leading to significant progress in instrument development. Further dissemination of N2O isotopomer analysis, however, is hampered by a lack of internationally agreed gaseous N2O reference materials and an uncertain compatibility of different laboratories and analytical techniques. METHODS: In a first comparison approach, eleven laboratories were each provided with N2O at tropospheric mole fractions (target gas T) and two reference gases (REF1 and REF2). The laboratories analysed all gases, applying their specific analytical routines. Compatibility of laboratories was assessed based on N2O isotopocule data for T, REF1 and REF2. Results for T were then standardised using REF1 and REF2 to evaluate the potential of N2O reference materials for improving compatibility between laboratories. RESULTS: Compatibility between laboratories depended on the analytical technique: isotope ratio mass spectrometry (IRMS) results showed better compatibility for δ(15)N values, while the performance of laser spectroscopy was superior with respect to N2O site preference. This comparison, however, is restricted by the small number of participating laboratories applying laser spectroscopy. Offset and two-point calibration correction of the N2O isotopomer data significantly improved the consistency of position-dependent nitrogen isotope data while the effect on δ(15)N values was only minor. CONCLUSIONS: The study reveals that for future research on N2O isotopocules, standardisation against N2O reference material is essential to improve interlaboratory compatibility. For atmospheric monitoring activities, we suggest N2O in whole air as a unifying scale anchor.


Assuntos
Gases/química , Espectrometria de Massas , Isótopos de Nitrogênio/química , Óxido Nitroso/química , Algoritmos , Gases/análise , Lasers , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Espectrometria de Massas/tendências , Isótopos de Nitrogênio/análise , Óxido Nitroso/análise
16.
Rapid Commun Mass Spectrom ; 27(21): 2391-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24097395

RESUMO

RATIONALE: The oxygen isotope anomaly, Δ(17)O, of N2O and nitrate is useful to elucidate nitrogen oxide dynamics. The previously developed method for Δ(17)O measurement presents difficulty in maintaining optimal conditions of the gold tube for thermal decomposition of N2O to O2 and the Δ(17)O value is also sample size dependent. METHODS: Trace amounts (5-40 nmol) of N2O were decomposed quantitatively to O2 in a quartz tube by microwave discharge. The O2 was purified using gas chromatography. Triple oxygen isotopes were measured using isotope ratio mass spectrometry. Each step was connected online and was applied to the analysis of nitrate in precipitation samples collected in Yokohama, Japan. RESULTS: Precision (1σ) of Δ(17)O analysis was better than 0.26‰ when more than 20 nmol of N2O with a small Δ(17)O value (approx. 1‰) was measured. It was better than 0.76‰ when more than 60 nmol of nitrate was converted into N2O using the denitrifier method and then measured on the developed system. The obtained Δ(17)O values in precipitation samples (14.5-26.4‰) agreed with findings from previous studies. CONCLUSIONS: A novel on-line analytical method was developed to measure the triple oxygen isotopes of N2O using microwave discharge to decompose N2O. This easy-to-use method is free from conditioning of reaction devices, and is applicable to molecules other than N2O such as NO and NO2.

17.
Rapid Commun Mass Spectrom ; 27(13): 1517-26, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722686

RESUMO

RATIONALE: Static-chamber flux measurements have suggested that one of the world's largest grasslands, the Qinghai-Tibetan Plateau (QTP), is a potential source of nitrous oxide (N2O), a major greenhouse gas. However, production and consumption pathways of N2O have not been identified by in situ field measurements. METHODS: Ratios of N2O isotopomers ((14)N(15)N(16)O and (15)N(14)N(16)O) and an isotopologue ((14)N(14)N(18)O) with respect to (14)N(14)N(16)O in the atmosphere, static chambers, and soils were measured by gas chromatography and mass spectrometry in the summer of 2005 and the following winter of 2006 at three typical alpine ecosystems: alpine meadow, alpine shrub, and alpine wetland, on the QTP, China. RESULTS: Site preference (SP) values of soil-emitted N2 O were estimated as 33.7‰ and 30.1‰ for alpine meadow and shrub, respectively, suggesting larger contributions by fungal denitrification, than by bacterial denitrification and nitrifier-denitrification, to N2 O production. Statistical analysis of the relationship between SP and δ(15)N(bulk) values indicated that in alpine meadow, shrub, and wetland sites fungal denitrification contributed 40.7%, 40.0%, and 23.2% to gross N2O production and the produced N2O was reduced by 87.6%, 82.9%, and 92.7%, respectively. CONCLUSIONS: The combined measurements of N2O concentration, flux, and isotopomeric signatures provide a robust estimation of N2O circulation dynamics in alpine ecosystems on the QTP, which would contribute to the development of ecosystem nitrogen cycle model.


Assuntos
Ecossistema , Óxido Nítrico/química , Altitude , Atmosfera/análise , China , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Isótopos de Nitrogênio/análise
19.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454681

RESUMO

Temperature is a key variable in biological processes. However, a complete understanding of biological temperature adaptation is lacking, in part because of the unique constraints among different evolutionary lineages and physiological groups. Here we compared the genomes of cultivated psychrotolerant and thermotolerant methanogens, which are physiologically related and span growth temperatures from -2.5°C to 122°C. Despite being phylogenetically distributed amongst three phyla in the archaea, the genomic core of cultivated methanogens comprises about one-third of a given genome, while the genome fraction shared by any two organisms decreases with increasing phylogenetic distance between them. Increased methanogenic growth temperature is associated with reduced genome size, and thermotolerant organisms-which are distributed across the archaeal tree-have larger core genome fractions, suggesting that genome size is governed by temperature rather than phylogeny. Thermotolerant methanogens are enriched in metal and other transporters, and psychrotolerant methanogens are enriched in proteins related to structure and motility. Observed amino acid compositional differences between temperature groups include proteome charge, polarity and unfolding entropy. Our results suggest that in the methanogens, shared physiology maintains a large, conserved genomic core even across large phylogenetic distances and biology's temperature extremes.


Assuntos
Archaea , Temperatura Alta , Temperatura , Filogenia , Archaea/genética , Archaea/metabolismo , Genômica
20.
Sci Total Environ ; 872: 162062, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36804973

RESUMO

Oil palm plantations in Southeast Asia are the largest supplier of palm oil products and have been rapidly expanding in the last three decades even in peat-swamp areas. Oil palm plantations on peat ecosystems have a unique water management system that lowers the water table and, thus, may yield indirect N2O emissions from the peat drainage system. We conducted two seasons of spatial monitoring for the dissolved N2O concentrations in the drainage and adjacent rivers of palm oil plantations on peat swamps in Sarawak, Malaysia, to evaluate the magnitude of indirect N2O emissions from this ecosystem. In both the dry and wet seasons, the mean and median dissolved N2O concentrations exhibited over-saturation in the drainage water, i.e., the oil palm plantation drainage may be a source of N2O to the atmosphere. In the wet season, the spatial distribution of dissolved N2O showed bimodal peaks in both the unsaturated and over-saturated concentrations. The bulk δ15N of dissolved N2O was higher than the source of inorganic N in the oil palm plantation (i.e., N fertilizer and soil organic nitrogen) during both seasons. An isotopocule analysis of the dissolved N2O suggested that denitrification was a major source of N2O, followed by N2O reduction processes that occurred in the drainage water. The δ15N and site preference mapping analysis in dissolved N2O revealed that a significant proportion of the N2O produced in peat and drainage is reduced to N2 before being released into the atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA