Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(3): e202303095, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847813

RESUMO

We report hydroboration of carbodiimide and isocyanate substrates catalyzed by a cyclic carbodiphosphorane catalyst. The cyclic carbodiphosphorane outperformed the other Lewis basic carbon species tested, including other zerovalent carbon compounds, phosphorus ylides, an N-heterocyclic carbene, and an N-heterocyclic olefin. Hydroborations of seven carbodiimides and nine isocyanates were performed at room temperature to form N-boryl formamidine and N-boryl formamide products. Intermolecular competition experiments demonstrated the selective hydroboration of alkyl isocyanates over carbodiimide and ketone substrates. DFT calculations support a proposed mechanism involving activation of pinacolborane by the carbodiphosphorane catalyst, followed by hydride transfer and B-N bond formation.

2.
Curr Treat Options Oncol ; 23(1): 99-116, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35178674

RESUMO

OPINION STATEMENT: Hairy cell leukemia variant (HCL-V) is a rare B cell lymphoproliferative disorder with a clinical-pathological distinction from the classic form of hairy cell leukemia (HCL-C). HCL-V is more aggressive in nature, has a higher tendency to be refractory to conventional purine analog pharmacotherapies, and leads to a poorer prognosis. Hence, these differing features bring paramount importance to the diagnosis and management of HCL-V. While there is no genetic mutation diagnostic of HCL-V, genetic profiling efforts have identified potential therapeutic targets (i.e., MAP2K1, KDM6A, CREBBP, ARID1A, CCND3, U2AF1, KMT2C) and yielded prognostic markers (i.e., IGHV4-34 rearrangements). To date, combination chemoimmunotherapies, such as cladribine and rituximab, have shown the best results in HCL-V. Future directions include targeted therapies such as moxetumomab pasudotox, ibrutinib, trametinib, and binimetinib and potentially anti-CD22 chimeric antigen receptor T cell therapy. The purpose of this review is to provide an outline of the diagnostic approach and an update on the therapeutic advancements in HCL-V.


Assuntos
Antineoplásicos , Leucemia de Células Pilosas , Antineoplásicos/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Leucemia de Células Pilosas/etiologia , Leucemia de Células Pilosas/genética , Rituximab/uso terapêutico
3.
Neuromodulation ; 25(8): 1086-1096, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35688702

RESUMO

OBJECTIVE: Overactive bladder (OAB) is a condition that has physical, social, psychosocial, and financial impacts. Transcutaneous tibial nerve stimulation (TTNS) is a modality that stimulates the nerve root fibers of L5-S3, the same spinal segments of the parasympathetic nervous system as the bladder. This scoping review aims to identify current literature available on the feasibility and outcomes of TTNS as a first-line treatment option for OAB. MATERIALS AND METHODS: A scoping review of six electronic data bases was performed to identify full-text articles from 2015 that explored the impact of TTNS on OAB and bladder dysfunction in people aged >18 years. RESULTS: A total of 15 articles met the inclusion criteria. TTNS was compared with sham treatment, parasacral stimulation, pelvic floor muscle training (PFMT), anticholinergic medication, and percutaneous tibial nerve stimulation (PTNS). Heterogeneity in treatment application and parameters existed, with variations in treatment duration, frequency of use, and treatment settings such as pulse width (µs) and frequency (Hz). Results indicated that TTNS has efficacy equal to PFMT and PTNS in the management of OAB; however, it is not as efficacious as anticholinergic medication. CONCLUSIONS: TTNS is a promising first-line management option for people with OAB, particularly in the older population and for those with neurogenic bladder. It can provide symptomatic relief from urinary incontinence, frequency, urgency, and nocturia, while avoiding the bothersome side effects of more invasive or pharmaceutical therapies. Heterogeneity in treatment parameters limits generalizability and translation of the most appropriate clinical application and should be considered in future trials.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Bexiga Urinária Hiperativa , Humanos , Bexiga Urinária Hiperativa/terapia , Resultado do Tratamento , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Tibial , Antagonistas Colinérgicos
4.
J Intensive Care Med ; 34(11-12): 967-972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28703019

RESUMO

BACKGROUND: "Rules of thumb" for the replacement of electrolytes, including magnesium, in critical care settings are used, despite minimal empirical validation of their ability to achieve a target serum concentration. This study's purpose was to evaluate the effectiveness and safety surrounding magnesium replacement in medically, critically ill patients with mild-to-moderate hypomagnesemia. METHODS: This was a single-center, retrospective, observational evaluation of episodes of intravenous magnesium replacement ordered for patients with mild-to-moderate hypomagnesemia (1.0-1.9 mEq/L) admitted to a medical intensive care unit from May 2014 to April 2016. The primary effectiveness outcome, achievement of target serum magnesium concentration (≥2 mEq/L) compared to expected achievement using a "rule of thumb" estimation that 1 g intravenous magnesium sulfate raises the magnesium concentration 0.15 mEq/L, was tested using 1-sample z test. Logistic regression analysis was conducted to assess the effect of infusion rate on target achievement. RESULTS: Of 152 days on which magnesium replacements were provided for 72 patients, a follow-up serum magnesium concentration was checked within 24 hours in 89 (58.6%) episodes. Of these 89 episodes, serum magnesium concentration reached target in only 49 (59.8%) episodes compared to an expected 89 (100%; P < .0001). There was no significant association between infusion rate and achievement of the target serum magnesium concentration (odds ratio: 0.962, 95% confidence interval: 0.411-2.256). CONCLUSIONS: Medically, critically ill patients who received nonprotocolized magnesium replacement achieved the target serum magnesium concentration less frequently than the "rule of thumb" estimation predicted.


Assuntos
Cuidados Críticos/métodos , Estado Terminal/terapia , Deficiência de Magnésio/tratamento farmacológico , Sulfato de Magnésio/administração & dosagem , Magnésio/sangue , Centros Médicos Acadêmicos , Administração Intravenosa , Adolescente , Adulto , Idoso , Protocolos Clínicos , Cuidados Críticos/normas , Feminino , Humanos , Unidades de Terapia Intensiva , Deficiência de Magnésio/sangue , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
5.
Pain Med ; 20(8): 1592-1599, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726985

RESUMO

OBJECTIVE: Postsurgical follow-up calls enable nurses to assess a patient's condition, provide tailored education, and improve the patient's experience. Despite the benefits, barriers to phone-based assessments may include patient nonresponse and lack of time due to demanding clinical schedules. The purpose of this trial was to examine the feasibility and utility of a smartphone app, mCare, for assessing pain, pain impact, and peripheral nerve block effects in patients. DESIGN: Pilot randomized control trial. SETTING AND PATIENTS: Eligible patients at a military treatment facility undergoing same-day surgery were randomized to the mCare group (N = 24) or the standard-of-care telephone (N = 26) group. RESULTS: Outcomes included initial response (assessment completion) rates and participant and nurse satisfaction. There were no differences in the response rates upon initial contact attempt, and patients in both groups reported similar levels of satisfaction and convenience. Nurses reported greater satisfaction with the app compared with standard-of-care telephone calls. CONCLUSIONS: Before wider implementation, further considerations of app-based assessment need to be fully explored.


Assuntos
Procedimentos Cirúrgicos Ambulatórios , Atitude do Pessoal de Saúde , Aplicativos Móveis , Bloqueio Nervoso , Dor Pós-Operatória/diagnóstico , Satisfação do Paciente , Cuidados Pós-Operatórios/métodos , Telefone , Adulto , Estudos de Viabilidade , Feminino , Hospitais Militares , Humanos , Masculino , Pessoa de Meia-Idade , Enfermeiras e Enfermeiros , Medição da Dor/métodos , Dor Pós-Operatória/enfermagem , Aceitação pelo Paciente de Cuidados de Saúde , Projetos Piloto , Smartphone , Envio de Mensagens de Texto
6.
PLoS Pathog ; 12(2): e1005437, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26837067

RESUMO

Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the ßTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of ßTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.


Assuntos
Proteínas F-Box/metabolismo , Vírus da Febre do Vale do Rift , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais , Antivirais/farmacologia , Linhagem Celular , Proteínas Culina/metabolismo , Genes Reguladores/genética , Humanos , Fosforilação/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(44): 13711-6, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483464

RESUMO

We reconstructed the synaptic circuits of seven columns in the second neuropil or medulla behind the fly's compound eye. These neurons embody some of the most stereotyped circuits in one of the most miniaturized of animal brains. The reconstructions allow us, for the first time to our knowledge, to study variations between circuits in the medulla's neighboring columns. This variation in the number of synapses and the types of their synaptic partners has previously been little addressed because methods that visualize multiple circuits have not resolved detailed connections, and existing connectomic studies, which can see such connections, have not so far examined multiple reconstructions of the same circuit. Here, we address the omission by comparing the circuits common to all seven columns to assess variation in their connection strengths and the resultant rates of several different and distinct types of connection error. Error rates reveal that, overall, <1% of contacts are not part of a consensus circuit, and we classify those contacts that supplement (E+) or are missing from it (E-). Autapses, in which the same cell is both presynaptic and postsynaptic at the same synapse, are occasionally seen; two cells in particular, Dm9 and Mi1, form ≥ 20-fold more autapses than do other neurons. These results delimit the accuracy of developmental events that establish and normally maintain synaptic circuits with such precision, and thereby address the operation of such circuits. They also establish a precedent for error rates that will be required in the new science of connectomics.


Assuntos
Drosophila melanogaster/fisiologia , Sinapses/fisiologia , Visão Ocular/fisiologia , Animais
8.
J Biol Chem ; 291(24): 12747-12760, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27068743

RESUMO

Most colon cancer cases are initiated by truncating mutations in the tumor suppressor, adenomatous polyposis coli (APC). APC is a critical negative regulator of the Wnt signaling pathway that participates in a multi-protein "destruction complex" to target the key effector protein ß-catenin for ubiquitin-mediated proteolysis. Prior work has established that the poly(ADP-ribose) polymerase (PARP) enzyme Tankyrase (TNKS) antagonizes destruction complex activity by promoting degradation of the scaffold protein Axin, and recent work suggests that TNKS inhibition is a promising cancer therapy. We performed a yeast two-hybrid (Y2H) screen and uncovered TNKS as a putative binding partner of Drosophila APC2, suggesting that TNKS may play multiple roles in destruction complex regulation. We find that TNKS binds a C-terminal RPQPSG motif in Drosophila APC2, and that this motif is conserved in human APC2, but not human APC1. In addition, we find that APC2 can recruit TNKS into the ß-catenin destruction complex, placing the APC2/TNKS interaction at the correct intracellular location to regulate ß-catenin proteolysis. We further show that TNKS directly PARylates both Drosophila Axin and APC2, but that PARylation does not globally regulate APC2 protein levels as it does for Axin. Moreover, TNKS inhibition in colon cancer cells decreases ß-catenin signaling, which we find cannot be explained solely through Axin stabilization. Instead, our findings suggest that TNKS regulates destruction complex activity at the level of both Axin and APC2, providing further mechanistic insight into TNKS inhibition as a potential Wnt pathway cancer therapy.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteína Axina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Tanquirases/metabolismo , beta Catenina/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteína Axina/genética , Western Blotting , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Imunofluorescência , Células HCT116 , Humanos , Masculino , Ligação Proteica , Especificidade por Substrato , Tanquirases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Técnicas do Sistema de Duplo-Híbrido , beta Catenina/genética
9.
J Virol ; 87(15): 8451-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720721

RESUMO

We show that interferon-induced transmembrane protein 1 (IFITM-1), IFITM-2, and IFITM-3 exhibit a broad spectrum of antiviral activity against several members of the Bunyaviridae family, including Rift Valley fever virus (RVFV), La Crosse virus, Andes virus, and Hantaan virus, all of which can cause severe disease in humans and animals. We found that RVFV was restricted by IFITM-2 and -3 but not by IFITM-1, whereas the remaining viruses were equally restricted by all IFITMs. Indeed, at low doses of alpha interferon (IFN-α), IFITM-2 and -3 mediated more than half of the antiviral activity of IFN-α against RVFV. IFITM-2 and -3 restricted RVFV infection mostly by preventing virus membrane fusion with endosomes, while they had no effect on virion attachment to cells, endocytosis, or viral replication kinetics. We found that large fractions of IFITM-2 and IFITM-3 occupy vesicular compartments that are distinct from the vesicles coated by IFITM-1. In addition, although overexpression of all IFITMs expanded vesicular and acidified compartments within cells, there were marked phenotypic differences among the vesicular compartments occupied by IFITMs. Collectively, our data provide new insights into the possible mechanisms by which the IFITM family members restrict distinct viruses.


Assuntos
Antígenos de Diferenciação/imunologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/imunologia , Proteínas de Ligação a RNA/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Linhagem Celular , Vírus Hantaan/imunologia , Vírus Hantaan/fisiologia , Orthohantavírus/imunologia , Orthohantavírus/fisiologia , Humanos , Interferon-alfa/imunologia , Vírus La Crosse/imunologia , Vírus La Crosse/fisiologia
10.
Microbiol Spectr ; 12(4): e0358623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391232

RESUMO

Although smallpox has been eradicated, other orthopoxviruses continue to be a public health concern as exemplified by the ongoing Mpox (formerly monkeypox) global outbreak. While medical countermeasures (MCMs) previously approved by the Food and Drug Administration for the treatment of smallpox have been adopted for Mpox, previously described vulnerabilities coupled with the questionable benefit of at least one of the therapeutics during the 2022 Mpox outbreak reinforce the need for identifying and developing other MCMs against orthopoxviruses. Here, we screened a panel of Merck proprietary small molecules and identified a novel nucleoside inhibitor with potent broad-spectrum antiviral activity against multiple orthopoxviruses. Efficacy testing of a 7-day dosing regimen of the orally administered nucleoside in a murine model of severe orthopoxvirus infection yielded a dose-dependent increase in survival. Treated animals had greatly reduced lesions in the lung and nasal cavity, particularly in the 10 µg/mL dosing group. Viral levels were also markedly lower in the UMM-766-treated animals. This work demonstrates that this nucleoside analog has anti-orthopoxvirus efficacy and can protect against severe disease in a murine orthopox model.IMPORTANCEThe recent monkeypox virus pandemic demonstrates that members of the orthopoxvirus, which also includes variola virus, which causes smallpox, remain a public health issue. While currently FDA-approved treatment options exist, risks that resistant strains of orthopoxviruses may arise are a great concern. Thus, continued exploration of anti-poxvirus treatments is warranted. Here, we developed a template for a high-throughput screening assay to identify anti-poxvirus small-molecule drugs. By screening available drug libraries, we identified a compound that inhibited orthopoxvirus replication in cell culture. We then showed that this drug can protect animals against severe disease. Our findings here support the use of existing drug libraries to identify orthopoxvirus-targeting drugs that may serve as human-safe products to thwart future outbreaks.


Assuntos
Mpox , Orthopoxvirus , Varíola , Vírus da Varíola , Animais , Camundongos , Humanos , Nucleosídeos/uso terapêutico , Varíola/tratamento farmacológico , Varíola/prevenção & controle , Modelos Animais de Doenças
11.
bioRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071261

RESUMO

Whole-genome doubling (WGD) is a critical driver of tumor development and is linked to drug resistance and metastasis in solid malignancies. Here, we demonstrate that WGD is an ongoing mutational process in tumor evolution. Using single-cell whole-genome sequencing, we measured and modeled how WGD events are distributed across cellular populations within tumors and associated WGD dynamics with properties of genome diversification and phenotypic consequences of innate immunity. We studied WGD evolution in 65 high-grade serous ovarian cancer (HGSOC) tissue samples from 40 patients, yielding 29,481 tumor cell genomes. We found near-ubiquitous evidence of WGD as an ongoing mutational process promoting cell-cell diversity, high rates of chromosomal missegregation, and consequent micronucleation. Using a novel mutation-based WGD timing method, doubleTime , we delineated specific modes by which WGD can drive tumor evolution: (i) unitary evolutionary origin followed by significant diversification, (ii) independent WGD events on a pre-existing background of copy number diversity, and (iii) evolutionarily late clonal expansions of WGD populations. Additionally, through integrated single-cell RNA sequencing and high-resolution immunofluorescence microscopy, we found that inflammatory signaling and cGAS-STING pathway activation result from ongoing chromosomal instability and are restricted to tumors that remain predominantly diploid. This contrasted with predominantly WGD tumors, which exhibited significant quiescent and immunosuppressive phenotypic states. Together, these findings establish WGD as an evolutionarily 'active' mutational process that promotes evolvability and dysregulated immunity in late stage ovarian cancer.

12.
J Lipid Res ; 54(6): 1616-1629, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23468130

RESUMO

Light-induced retinal degeneration (LIRD) in albino rats causes apoptotic photoreceptor cell death. Ceramide is a second messenger for apoptosis. We tested whether increases in ceramide mediate photoreceptor apoptosis in LIRD and if inhibition of ceramide synthesis protects the retina. Sprague-Dawley rats were exposed to 2,700 lux white light for 6 h, and the retinal levels of ceramide and its intermediary metabolites were measured by GC-MS or electrospray ionization tandem mass spectrometry. Enzymes of the de novo biosynthetic and sphingomyelinase pathways of ceramide generation were assayed, and gene expression was measured. The dosage and temporal effect of the ceramide synthase inhibitor FTY720 on the LIRD retina were measured by histological and functional analyses. Retinal ceramide levels increased coincident with the increase of dihydroceramide at various time points after light stress. Light stress in retina induces ceramide generation predominantly through the de novo pathway, which was prevented by systemic administration of FTY720 (10 mg/kg) leading to the protection of retinal structure and function. The neuroprotection of FTY720 was independent of its immunosuppressive action. We conclude that ceramide increase by de novo biosynthesis mediates photoreceptor apoptosis in the LIRD model and that inhibition of ceramide production protects the retina against light stress.


Assuntos
Ceramidas/biossíntese , Luz/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Propilenoglicóis/farmacologia , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Esfingosina/análogos & derivados , Animais , Cloridrato de Fingolimode , Imunossupressores/farmacologia , Ratos , Ratos Sprague-Dawley , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Esfingosina/farmacologia
13.
Exp Eye Res ; 106: 24-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142158

RESUMO

Mutations in the Ceramide kinase like (CERKL) gene are associated with retinitis pigmentosa (RP26) and cone-rod dystrophy. CERKL is homologous to Ceramide kinase (CERK), and its function is still unknown. The purpose of this study was to test the expression and distribution of this gene and its protein in rat and in mouse tissues, in light-stressed rat retinas and in the retinas of NeuroD1 knock-out mice to understand the role of CERKL in the retina. Expression of Cerkl and Cerk mRNA was determined by quantitative RT-PCR. Expression of the protein was determined by Western blotting with anti-CERKL antibody. Localization of the protein was determined by using immunofluorescence microscopy. With qRT-PCR, we revealed that the relative mRNA expression of Cerkl was the highest in the retina among all the rat tissue tested; it was >10-fold higher than in the brain. On the other hand, Cerk has ubiquitous expression and its relative abundance is >2 fold of Cerkl in the retina. Cerkl was expressed minimally in the developing mouse eyes and reached a peak at retinal maturity at 2 months. Western blots of retinal tissues revealed two major CERKL protein bands: 59 kDa (C1) and 37 kDa (C2). However, only C2 CERKL was found in the rat retinal rod outer segment (ROS) at level of that was not changed in light vs. dark adaptation. In the light-stressed retina, expression of Cerkl mRNA increased significantly, which was reflected in only on C2 CERKL protein. The CERKL protein localized prominently to the ganglion cells, inner nuclear layers (INL), retinal pigment epithelial (RPE) cells, and photoreceptor inner segments in the retinal sections. Nuclear localization of CERKL was not affected in RPE, INL and the ganglion cell layers in the light-stressed retina; however, the perinuclear and outer segment locations appear to be altered. In the NeuroD1 knock-out mouse retina, the expression of Cerkl mRNA and protein decreased and that decrease also pertains to C2 CERKL. In conclusion, the retina had the highest level of Cerkl mRNA and protein expression, which reached its maximum in the adult retina; CERKL localized to ROS and RPE cells and the light-adaptation did not change the level of CERKL in ROS; light-stress induced Cerkl expression in the retina; and its expression decreased in NeuroD1 knock-out retina. Thus, CERKL may be important for the stress responses and protection of photoreceptor cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica/fisiologia , Luz/efeitos adversos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Lesões Experimentais por Radiação/genética , Retina/efeitos da radiação , Degeneração Retiniana/genética , Animais , Western Blotting , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microscopia de Fluorescência , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Mensageiro/metabolismo , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Retina/embriologia , Retina/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo
15.
Expert Opin Drug Metab Toxicol ; 19(2): 75-90, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36939456

RESUMO

INTRODUCTION: Busulfan is an alkylating agent widely used in the conditioning of hematopoietic stem cell transplantation possessing a complex metabolism and a large interindividual and intra-individual variability, especially in children. Combined with the strong rationale of busulfan PK/PD relationships, factors altering its clearance (e.g. weight, age, and GST-A genetic polymorphism mainly) can also affect clinical outcomes. AREAS COVERED: This review aims to provide an overview of the current knowledge on busulfan pharmacokinetics, its pharmacokinetics variabilities in pediatric populations, drug-drug interactions (DDI), and their consequences regarding dose individualization. This review was based on medical literature up until October 2021. EXPERT OPINION: To ensure effective busulfan exposure in pediatrics, different weight-based nomograms have been established to determine busulfan dosage and provided improved results (65-80% of patients correctly exposed). In addition to nomograms, therapeutic drug monitoring (TDM) of busulfan measuring plasmatic concentrations to estimate busulfan pharmacokinetic parameters can be used. TDM is now widely carried out in routine practices and aims to ensure the targeting of the reported therapeutic windows by individualizing busulfan dosing based on the clearance estimations from a previous dose.


Assuntos
Bussulfano , Transplante de Células-Tronco Hematopoéticas , Criança , Humanos , Bussulfano/farmacocinética , Transplante de Células-Tronco Hematopoéticas/métodos , Interações Medicamentosas , Monitoramento de Medicamentos/métodos , Cinética
16.
Mol Vis ; 18: 1325-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22690111

RESUMO

PURPOSE: Caffeic acid phenethyl ester (CAPE), an active component of honeybee propolis, has a wide range of beneficial properties. The purpose of this study was to test the protective role of CAPE in 661W cells (in vitro) against H(2)O(2)-mediated cell death and in albino rats (in vivo) against various light conditions. METHODS: The 661W cells were pretreated with CAPE and then stressed with H(2)O(2). Cell death was measured with lactate dehydrogenase (LDH) release assay, and mRNA and proteins were analyzed. Sprague Dawley rats were raised on either a control or CAPE (0.02%) diet and exposed to various light conditions for short or long periods. Retinal histology, mRNA, protein, lipid composition, and retinal function by electroretinography (ERG) were measured at the end of feeding. RESULTS: Pretreatment of 661W cells with CAPE reduced H(2)O(2)-mediated cell death in a dose-dependent manner and induced expression of heme oxygenase-1 (Ho1). Albino rats fed with CAPE had greater expression of Ho1 and intercellular adhesion molecule 1 (Icam1), less expression of FOS-like antigen (Fosl) and lipoxygenase 12 (Lox12) genes in the retina, less translocation of nuclear factor kappaB protein to the nucleus, and a lower molar ratio of n-3 polyunsaturated fatty acids. Further, the ERGs of the retinas of CAPE-fed rats were significantly higher than those of the control-fed rats when raised in dim light. CONCLUSIONS: CAPE can activate the antioxidative gene expression pathway in retinal cells in vitro and in vivo. Feeding CAPE to albino rats can enhance ERG responses and change the lipid profile in the rats' retinas.


Assuntos
Ácidos Cafeicos/farmacologia , Proteínas do Olho/genética , Expressão Gênica/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Albinismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Eletrorretinografia , Proteínas do Olho/metabolismo , Ácidos Graxos Ômega-3/análise , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , L-Lactato Desidrogenase/análise , L-Lactato Desidrogenase/metabolismo , Luz , Lipoxigenases/genética , Lipoxigenases/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Álcool Feniletílico/farmacologia , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Própole/química , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley
17.
Viruses ; 14(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632807

RESUMO

A hallmark of severe acute respiratory syndrome virus (SARS-CoV-2) replication is the discontinuous transcription of open reading frames (ORFs) encoding structural virus proteins. Real-time reverse transcription PCR (RT-qPCR) assays in previous publications used either single or multiplex assays for SARS-CoV-2 genomic RNA detection and a singleplex approach for subgenomic RNA detection. Although multiplex approaches often target multiple genomic RNA segments, an assay that concurrently detects genomic and subgenomic targets has been lacking. To bridge this gap, we developed two duplex one-step RT-qPCR assays that detect SARS-CoV-2 genomic ORF1a and either subgenomic spike or subgenomic ORF3a RNAs. All primers and probes for our assays were designed to bind to variants of SARS-CoV-2. In this study, our assays successfully detected SARS-CoV-2 Washington strain and delta variant isolates at various time points during the course of live virus infection in vitro. The ability to quantify subgenomic SARS-CoV-2 RNA is important, as it may indicate the presence of active replication, particularly in samples collected longitudinally. Furthermore, specific detection of genomic and subgenomic RNAs simultaneously in a single reaction increases assay efficiency, potentially leading to expedited lucidity about viral replication and pathogenesis of any variant of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genômica , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética
18.
Front Neurol ; 13: 836716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693005

RESUMO

Abnormal contralesional M1 activity is consistently reported in patients with compromised upper limb and hand function after stroke. The underlying mechanisms and functional implications of this activity are not clear, which hampers the development of treatment strategies targeting this brain area. The goal of the present study was to determine the extent to which contralesional M1 activity can be explained by the demand of a motor task, given recent evidence for increasing ipsilateral M1 activity with increasing demand in healthy age-matched controls. We hypothesized that higher activity in contralesional M1 is related to greater demand on precision in a hand motor task. fMRI data were collected from 19 patients with ischemic stroke affecting hand function in the subacute recovery phase and 31 healthy, right-handed, age-matched controls. The hand motor task was designed to parametrically modulate the demand on movement precision. Electromyography data confirmed strictly unilateral task performance by all participants. Patients showed significant impairment relative to controls in their ability to perform the task in the fMRI scanner. However, patients and controls responded similarly to an increase in demand for precision, with better performance for larger targets and poorer performance for smaller targets. Patients did not show evidence of elevated ipsilesional or contralesional M1 blood oxygenation level-dependent (BOLD) activation relative to healthy controls and mean BOLD activation levels were not elevated for patients with poorer performance relative to patients with better task performance. While both patients and healthy controls showed demand-dependent increases in BOLD activation in both ipsilesional/contralateral and contralesional/ipsilateral hemispheres, patients with stroke were less likely to show evidence of a linear relationship between the demand on precision and BOLD activation in contralesional M1 than healthy controls. Taken together, the findings suggest that task demand affects the BOLD response in contralesional M1 in patients with stroke, though perhaps less strongly than in healthy controls. This has implications for the interpretation of reported abnormal bilateral M1 activation in patients with stroke because in addition to contralesional M1 reorganization processes it could be partially related to a response to the relatively higher demand of a motor task when completed by patients rather than by healthy controls.

19.
Front Cell Infect Microbiol ; 12: 798978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463647

RESUMO

Junín virus (JUNV), a New World arenavirus, is a rodent-borne virus and the causative agent of Argentine hemorrhagic fever. Humans become infected through exposure to rodent host secreta and excreta and the resulting infection can lead to an acute inflammatory disease with significant morbidity and mortality. Little is understood about the molecular pathogenesis of arenavirus hemorrhagic fever infections. We utilized Reverse Phase Protein Microarrays (RPPA) to compare global alterations in the host proteome following infection with an attenuated vaccine strain, Candid#1 (CD1), and the most parental virulent strain, XJ13, of JUNV in a human cell culture line. Human small airway epithelial cells were infected with CD1 or XJ13 at an MOI of 10, or mock infected. To determine proteomic changes at early timepoints (T = 1, 3, 8 and 24 h), the JUNV infected or mock infected cells were lysed in compatible buffers for RPPA. Out of 113 proteins that were examined by RPPA, 14 proteins were significantly altered following JUNV infection. Several proteins were commonly phosphorylated between the two strains and these correspond to entry and early replication events, to include p38 mitogen-activated protein kinase (MAPK), heat shock protein 27 (HSP27), and nuclear factor kappa B (NFκB). We qualitatively confirmed the alterations of these three proteins following infection by western blot analysis. We also determined that the inhibition of either p38 MAPK, with the small molecule inhibitor SB 203580 or siRNA knockdown, or HSP27, by siRNA knockdown, significantly decreases JUNV replication. Our data suggests that HSP27 phosphorylation at S82 upon virus infection is dependent on p38 MAPK activity. This work sheds light on the nuances of arenavirus replication.


Assuntos
Febre Hemorrágica Americana , Vírus Junin , Proteínas de Choque Térmico HSP27 , Humanos , Vírus Junin/genética , Proteômica , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno
20.
iScience ; 23(4): 100999, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32252021

RESUMO

The 2014-2016 West Africa Ebola virus (EBOV) outbreak coupled with the most recent outbreaks in Central Africa underscore the need to develop effective treatment strategies against EBOV. Although several therapeutic options have shown great potential, developing a wider breadth of countermeasures would increase our efforts to combat the highly lethal EBOV. Here we show that human cathelicidin antimicrobial peptide (AMP) LL-37 and engineered LL-37 AMPs inhibit the infection of recombinant virus pseudotyped with EBOV glycoprotein (GP) and the wild-type EBOV. These AMPs target EBOV infection at the endosomal cell-entry step by impairing cathepsin B-mediated processing of EBOV GP. Furthermore, two engineered AMPs containing D-amino acids are particularly potent in blocking EBOV infection in comparison with other AMPs, most likely owing to their resistance to intracellular enzymatic degradation. Our results identify AMPs as a novel class of anti-EBOV therapeutics and demonstrate the feasibility of engineering AMPs for improved therapeutic efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA