Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935838

RESUMO

This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.

2.
Plant Physiol ; 192(2): 945-966, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36718522

RESUMO

Verticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V. dahliae induces the expression of the CAROTENOID CLEAVAGE DIOXYGENASE 7 (GauCCD7) gene involved in strigolactone (SL) biosynthesis in Gossypium australe, suggesting a role for SLs in Verticillium wilt resistance. We found that the SL analog rac-GR24 enhanced while the SL biosynthesis inhibitor TIS108 decreased cotton resistance to Verticillium wilt. Knock-down of GbCCD7 and GbCCD8b genes in island cotton (Gossypium barbadense) decreased resistance, whereas overexpression of GbCCD8b in upland cotton (Gossypium hirsutum) increased resistance to Verticillium wilt. Additionally, Arabidopsis (Arabidopsis thaliana) SL mutants defective in CCD7 and CCD8 putative orthologs were susceptible, whereas both Arabidopsis GbCCD7- and GbCCD8b-overexpressing plants were more resistant to Verticillium wilt than wild-type (WT) plants. Transcriptome analyses showed that several genes related to the jasmonic acid (JA)- and abscisic acid (ABA)-signaling pathways, such as MYELOCYTOMATOSIS 2 (GbMYC2) and ABA-INSENSITIVE 5, respectively, were upregulated in the roots of WT cotton plants in responses to rac-GR24 and V. dahliae infection but downregulated in the roots of both GbCCD7- and GbCCD8b-silenced cotton plants. Furthermore, GbMYC2 suppressed the expression of GbCCD7 and GbCCD8b by binding to their promoters, which might regulate the homeostasis of SLs in cotton through a negative feedback loop. We also found that GbCCD7- and GbCCD8b-silenced cotton plants were impaired in V. dahliae-induced reactive oxygen species (ROS) accumulation. Taken together, our results suggest that SLs positively regulate cotton resistance to Verticillium wilt through crosstalk with the JA- and ABA-signaling pathways and by inducing ROS accumulation.


Assuntos
Arabidopsis , Verticillium , Gossypium/genética , Gossypium/metabolismo , Verticillium/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hormônios/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815339

RESUMO

Cytokinin (CK) in plants regulates both developmental processes and adaptation to environmental stresses. Arabidopsis histidine phosphotransfer ahp2,3,5 and type-B Arabidopsis response regulator arr1,10,12 triple mutants are almost completely defective in CK signaling, and the ahp2,3,5 mutant was reported to be salt tolerant. Here, we demonstrate that the arr1,10,12 mutant is also more tolerant to salt stress than wild-type (WT) plants. A comprehensive metabolite profiling coupled with transcriptome analysis of the ahp2,3,5 and arr1,10,12 mutants was conducted to elucidate the salt tolerance mechanisms mediated by CK signaling. Numerous primary (e.g., sugars, amino acids, and lipids) and secondary (e.g., flavonoids and sterols) metabolites accumulated in these mutants under nonsaline and saline conditions, suggesting that both prestress and poststress accumulations of stress-related metabolites contribute to improved salt tolerance in CK-signaling mutants. Specifically, the levels of sugars (e.g., trehalose and galactinol), amino acids (e.g., branched-chain amino acids and γ-aminobutyric acid), anthocyanins, sterols, and unsaturated triacylglycerols were higher in the mutant plants than in WT plants. Notably, the reprograming of flavonoid and lipid pools was highly coordinated and concomitant with the changes in transcriptional levels, indicating that these metabolic pathways are transcriptionally regulated by CK signaling. The discovery of the regulatory role of CK signaling on membrane lipid reprogramming provides a greater understanding of CK-mediated salt tolerance in plants. This knowledge will contribute to the development of salt-tolerant crops with the ability to withstand salinity as a key driver to ensure global food security in the era of climate crisis.


Assuntos
Citocininas/metabolismo , Estresse Salino/genética , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/fisiologia , Flavonoides/genética , Flavonoides/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Metabolômica/métodos , Salinidade , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473801

RESUMO

Epidermal cells are the main avenue for signal and material exchange between plants and the environment. Leaf epidermal cells primarily include pavement cells, guard cells, and trichome cells. The development and distribution of different epidermal cells are tightly regulated by a complex transcriptional regulatory network mediated by phytohormones, including jasmonic acid, and transcription factors. How the fate of leaf epidermal cells is determined, however, is still largely unknown due to the diversity of cell types and the complexity of their regulation. Here, we characterized the transcriptional profiles of epidermal cells in 3-day-old true leaves of Arabidopsis thaliana using single-cell RNA sequencing. We identified two genes encoding BASIC LEUCINE-ZIPPER (bZIP) transcription factors, namely bZIP25 and bZIP53, which are highly expressed in pavement cells and early-stage meristemoid cells. Densities of pavement cells and trichome cells were found to increase and decrease, respectively, in bzip25 and bzip53 mutants, compared with wild-type plants. This trend was more pronounced in the presence of jasmonic acid, suggesting that these transcription factors regulate the development of trichome cells and pavement cells in response to jasmonic acid.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Oxilipinas , Fatores de Transcrição de Zíper de Leucina Básica , Células Epidérmicas , Fatores de Transcrição , Folhas de Planta , Tricomas , Análise de Sequência de RNA , Regulação da Expressão Gênica de Plantas
5.
J Environ Manage ; 356: 120701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531134

RESUMO

In the context of the "United Nations Decade on Ecosystem Restoration", optimizing spatiotemporal arrangements for ecological restoration is an important approach to enhancing overall socioecological benefits for sustainable development. However, against the background of ecological degradation caused by the human use of most natural resources at levels that have approached or exceeded the safe and sustainable boundaries of ecosystems, it is key to explain how to optimize ecological restoration by classified management and optimal total benefits. In response to these issues, we combined spatial heterogeneity and temporal dynamics at the national scale in China to construct five ecological performance regimes defined by indicators that use planetary boundaries and ecological pressures which served as the basis for prioritizing ecological restoration areas and implementing zoning control. By integrating habitat conservation, biodiversity, water supply, and restoration cost constraints, seven ecological restoration scenarios were simulated to optimize the spatial layout of ecological restoration projects (ERPs). The results indicated that the provinces with unsustainable freshwater use, climate change, and land use accounted for more than 25%, 66.7%, and 25%, respectively, of the total area. Only 30% of the provinces experienced a decrease in environmental pressure. Based on the ecological performance regimes, ERP sites spanning the past 20 years were identified, and more than 50% of the priority areas were clustered in regime areas with increased ecological stress. As the restoration area targets doubled (40%) from the baseline (20%), a multi-objective scenario presents a trade-off between expanded ERPs in areas with highly beneficial effects and minimal restoration costs. In conclusion, a reasonable classification and management regime is the basis for targeted restoration. Coordinating multiple objectives and costs in ecological restoration is the key to maximizing socio-ecological benefits. Our study offered new perspectives on systematic and sustainable planning for ecological restoration.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Biodiversidade , China , Abastecimento de Água
6.
Plant J ; 111(6): 1643-1659, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862290

RESUMO

Nitrate (NO3 - ) and phosphate (Pi) deficiencies are the major constraints for chickpea productivity, significantly impacting global food security. However, excessive fertilization is expensive and can also lead to environmental pollution. Therefore, there is an urgent need to develop chickpea cultivars that are able to grow on soils deficient in both NO3 - and Pi. This study focused on the identification of key NO3 - and/or Pi starvation-responsive metabolic pathways in the leaves and roots of chickpea grown under single and double nutrient deficiencies of NO3 - and Pi, in comparison with nutrient-sufficient conditions. A global metabolite analysis revealed organ-specific differences in the metabolic adaptation to nutrient deficiencies. Moreover, we found stronger adaptive responses in the roots and leaves to any single than combined nutrient-deficient stresses. For example, chickpea enhanced the allocation of carbon among nitrogen-rich amino acids (AAs) and increased the production of organic acids in roots under NO3 - deficiency, whereas this adaptive response was not found under double nutrient deficiency. Nitrogen remobilization through the transport of AAs from leaves to roots was greater under NO3 - deficiency than double nutrient deficiency conditions. Glucose-6-phosphate and fructose-6-phosphate accumulated in the roots under single nutrient deficiencies, but not under double nutrient deficiency, and higher glycolytic pathway activities were observed in both roots and leaves under single nutrient deficiency than double nutrient deficiency. Hence, the simultaneous deficiency generated a unique profile of metabolic changes that could not be simply described as the result of the combined deficiencies of the two nutrients.


Assuntos
Cicer , Aminoácidos/metabolismo , Carbono/metabolismo , Cicer/metabolismo , Glucose-6-Fosfato/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Solo
7.
Plant J ; 111(6): 1732-1752, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883014

RESUMO

Cytokinin plays an important role in plant stress responses via a multistep signaling pathway, involving the histidine phosphotransfer proteins (HPs). In Arabidopsis thaliana, the AHP2, AHP3 and AHP5 proteins are known to affect drought responses; however, the role of AHP4 in drought adaptation remains undetermined. In the present study, using a loss-of-function approach we showed that AHP4 possesses an important role in the response of Arabidopsis to drought. This is evidenced by the higher survival rates of ahp4 than wild-type (WT) plants under drought conditions, which is accompanied by the downregulated AHP4 expression in WT during periods of dehydration. Comparative transcriptome analysis of ahp4 and WT plants revealed AHP4-mediated expression of several dehydration- and/or abscisic acid-responsive genes involved in modulation of various physiological and biochemical processes important for plant drought acclimation. In comparison with WT, ahp4 plants showed increased wax crystal accumulation in stems, thicker cuticles in leaves, greater sensitivity to exogenous abscisic acid at germination, narrow stomatal apertures, heightened leaf temperatures during dehydration, and longer root length under osmotic stress. In addition, ahp4 plants showed greater photosynthetic efficiency, lower levels of reactive oxygen species, reduced electrolyte leakage and lipid peroxidation, and increased anthocyanin contents under drought, when compared with WT. These differences displayed in ahp4 plants are likely due to upregulation of genes that encode enzymes involved in reactive oxygen species scavenging and non-enzymatic antioxidant metabolism. Overall, our findings suggest that AHP4 plays a crucial role in plant drought adaptation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Histidina/genética , Histidina/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
8.
Breast Cancer Res ; 25(1): 144, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968653

RESUMO

BACKGROUND: Breast cancer stem cells (BCSCs) are resistant to standard therapies, facilitate tumor dissemination, and contribute to relapse and progression. Super-enhancers are regulators of stemness, and BET proteins, which are critical for super-enhancer function, are a potential therapeutic target. Here, we investigated the effects of BET proteins on the regulation of breast cancer stemness using the pan-BET degrader ZBC260. METHODS: We evaluated the effect of ZBC260 on CSCs in TNBC cell lines. We assessed the effect of ZBC260 on cellular viability and tumor growth and measured its effects on cancer stemness. We used RNA sequencing and stemness index to determine the global transcriptomic changes in CSCs and bulk cells and further validated our findings by qPCR, western blot, and ELISA. RESULTS: ZBC260 potently inhibited TNBC growth both in vitro and in vivo. ZBC260 reduced stemness as measured by cell surface marker expression, ALDH activity, tumorsphere number, and stemness index while increasing differentiated cells. GSEA analysis indicated preferential downregulation of stemness-associated and inflammatory genes by ZBC260 in ALDH+ CSCs. CONCLUSIONS: The BET degrader ZBC260 is an efficient degrader of BET proteins that suppresses tumor progression and decreases CSCs through the downregulation of inflammatory genes and pathways. Our findings support the further development of BET degraders alone and in combination with other therapeutics as CSC targeting agents.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Proteínas/metabolismo , Proteínas/farmacologia , Proteínas/uso terapêutico , Transformação Celular Neoplásica/metabolismo , Diferenciação Celular/genética , Células-Tronco Neoplásicas/patologia
9.
Plant Cell Physiol ; 63(12): 1848-1856, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36255097

RESUMO

Crop varieties with a high yield are most desirable in the present context of the ever-growing human population. Mostly, the yield traits are governed by a complex of numerous molecular and genetic facets modulated by various quantitative trait loci (QTLs). With the identification and molecular characterizations of yield-associated QTLs over recent years, the central role of phytohormones in regulating plant yield is becoming more apparent. Most often, different groups of phytohormones work in close association to orchestrate yield attributes. Understanding this cross talk would thus provide new venues for phytohormone pyramiding by editing a single gene or QTL(s) for yield improvement. Here, we review a few important findings to integrate the knowledge on the roles of auxin, brassinosteroid and cytokinin and how a single gene or a QTL could govern cross talk among multiple phytohormones to determine the yield traits.


Assuntos
Oryza , Humanos , Oryza/genética , Brassinosteroides , Citocininas , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos
10.
Plant Cell Physiol ; 63(12): 1840-1847, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36255098

RESUMO

The global increase in nanotechnology applications has been unprecedented and has now moved into the area of agriculture and food production. Applications with promising potential in sustainable agriculture include nanobiosensors, nanofertilizers, nanopesticides, nano-mediated remediation strategies for contaminated soils and nanoscale strategies to increase crop production and protection. Given this, the impact of nanomaterials/nanoparticles (NPs) on plant species needs to be thoroughly evaluated as this represents a critical interface between the biosphere and the environment. Importantly, phytohormones represent a critical class of biomolecules to plant health and productivity; however, the impact of NPs on these molecules is poorly understood. In addition, phytohormones, and associated pathways, are widely explored in agriculture to influence several biological processes for the improvement of plant growth and productivity under natural as well as stressed conditions. However, the impact of exogenous applications of phytohormones on NP-treated plants has not been explored. The importance of hormone signaling and cross-talk with other metabolic systems makes these biomolecules ideal candidates for a thorough assessment of NP impacts on plant species. This article presents a critical evaluation of the existing yet limited literature available on NP-phytohormone interactions in plants. In addition, the developing strategy of nano-enabled precision delivery of phytohormones via nanocarriers will be explored. Finally, directions for future research and critical knowledge gaps will be identified for this important aspect of nano-enabled agriculture.


Assuntos
Fenômenos Biológicos , Nanoestruturas , Reguladores de Crescimento de Plantas , Desenvolvimento Vegetal , Plantas , Hormônio do Crescimento
11.
Plant Cell Physiol ; 63(12): 1914-1926, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35880749

RESUMO

In this study, we investigated the potential role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seedlings to high-temperature stress. We performed phenotypic, physiological and transcriptome analyses of Arabidopsis kai2 mutants and wild-type (WT) plants under control (kai2_C and WT_C, respectively) and 6- and 24-h heat stress conditions (kai2_H6, kai2_H24, WT_H6 and WT_H24, respectively) to understand the basis for KAI2-regulated heat stress tolerance. We discovered that the kai2 mutants exhibited hypersensitivity to high-temperature stress relative to WT plants, which might be associated with a more highly increased leaf surface temperature and cell membrane damage in kai2 mutant plants. Next, we performed comparative transcriptome analysis of kai2_C, kai2_H6, kai2_H24, WT_C, WT_H6 and WT_H24 to identify transcriptome differences between WT and kai2 mutants in response to heat stress. K-mean clustering of normalized gene expression separated the investigated genotypes into three clusters based on heat-treated and non-treated control conditions. Within each cluster, the kai2 mutants were separated from WT plants, implying that kai2 mutants exhibited distinct transcriptome profiles relative to WT plants. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed a repression in 'misfolded protein binding', 'heat shock protein binding', 'unfolded protein binding' and 'protein processing in endoplasmic reticulum' pathways, which was consistent with the downregulation of several genes encoding heat shock proteins and heat shock transcription factors in the kai2 mutant versus WT plants under control and heat stress conditions. Our findings suggest that chemical or genetic manipulation of KAI2 signaling may provide a novel way to improve heat tolerance in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Plant Cell Physiol ; 63(12): 1890-1899, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35475535

RESUMO

Sinapate esters, which are induced in plants under ultraviolet-B (UV-B) irradiation, have important roles not only in the protection against UV-B irradiation but also in the regulation of stomatal closure. Here, we speculated that sinapate esters would function in the stomatal closure of Arabidopsis thaliana in response to UV-B. We measured the stomatal aperture size of the wild-type (WT) and bright trichomes 1 (brt1) and sinapoylglucose accumulator 1 (sng1) mutants under UV-B irradiation; the latter two mutants are deficient in the conversion of sinapic acid to sinapoylglucose (SG) and SG to sinapoylmalate (SM), respectively. Both the brt1 and sng1 plants showed smaller stomatal apertures than the WT under normal light and UV-B irradiation conditions. The accumulation of SM and malate were induced by UV-B irradiation in WT and brt1 plants but not in sng1 plants. Consistently, exogenous malate application reduced UV-B-induced stomatal closure in WT, brt1 and sng1 plants. Nonetheless, levels of reactive oxygen species (ROS), nitric oxide (NO) and cytosolic Ca2+ were higher in guard cells of the sng1 mutant than in those of the WT under normal white light and UV-B irradiation, suggesting that disturbance of sinapate metabolism induced the accumulation of these signaling molecules that promote stomatal closure. Unexpectedly, exogenous sinapic acid application prevented stomatal closure of WT, brt1 and sng1 plants. In summary, we hypothesize that SG or other sinapate esters may promote the UV-B-induced malate accumulation and stomatal closure, whereas sinapic acid inhibits the ROS-NO pathway that regulates UV-B-induced cytosolic Ca2+ accumulation and stomatal closure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Ésteres/metabolismo , Malatos/metabolismo , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo
13.
Plant Cell Physiol ; 63(12): 1927-1942, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35997763

RESUMO

Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl. Defects in KAI2 functions resulted in delayed and inhibited cotyledon opening in kai2 seeds compared with WT seeds, suggesting that KAI2 played an important role in enhancing seed germination under salinity. Salt-stressed kai2 plants displayed more phenotypic aberrations, biomass reduction, water loss and oxidative damage than WT plants. kai2 shoots accumulated significantly more Na+ and thus had a lower K+/Na+ ratio, than WT, indicating severe ion toxicity in salt-stressed kai2 plants. Accordingly, kai2 plants displayed a lower expression of genes associated with Na+ homeostasis, such as SALT OVERLY SENSITIVE (SOS) 1, SOS2, HIGH-AFFINITY POTASSIUM TRANSPORTER 1;1 (HKT1;1) and CATION-HYDROGEN EXCHANGER 1 (NHX1) than WT plants. WT plants maintained a better glutathione level, glutathione-related redox status and antioxidant enzyme activities relative to kai2 plants, implying KAI2's function in oxidative stress mitigation in response to salinity. kai2 shoots had lower expression levels of genes involved in the biosynthesis of strigolactones (SLs), salicylic acid and jasmonic acid and the signaling of abscisic acid and SLs than those of WT plants, indicating interactive functions of KAI2 signaling with other hormone signaling in modulating plant responses to salinity. Collectively, these results underpin the likely roles of KAI2 in the alleviation of salinity effects in plants by regulating several physiological and biochemical mechanisms involved in ionic and osmotic balance, oxidative stress tolerance and hormonal crosstalk.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tolerância ao Sal/genética , Proteínas de Transporte/metabolismo , Glutationa/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Plant Cell Physiol ; 63(12): 1900-1913, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681253

RESUMO

Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Seca , Germinação/genética , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
15.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449344

RESUMO

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Assuntos
COVID-19 , Lonicera , Ácido Oleanólico , Plantas Medicinais , Saponinas , Humanos , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Saponinas/genética , Saponinas/química , Genômica , Evolução Molecular
16.
Plant Physiol ; 190(4): 2671-2687, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35822606

RESUMO

The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants. To clarify the mechanisms by which KUF1 negatively regulates drought tolerance, we performed physiological, transcriptome, and morphological analyses. We found that kuf1 plants limited leaf water loss by reducing stomatal aperture and cuticular permeability. In addition, kuf1 plants showed increased sensitivity of stomatal closure, seed germination, primary root growth, and leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of kuf1 and WT rosette leaves before and after dehydration showed that the differences in various drought tolerance-related traits were accompanied by differences in the expression of genes associated with stomatal closure (e.g. OPEN STOMATA 1), lipid and fatty acid metabolism (e.g. WAX ESTER SYNTHASE), and ABA responsiveness (e.g. ABA-RESPONSIVE ELEMENT 3). The kuf1 mutant plants had higher root/shoot ratios and root hair densities than WT plants, suggesting that they could absorb more water than WT plants. Together, these results demonstrate that KUF1 negatively regulates drought tolerance by modulating various physiological traits, morphological adjustments, and ABA responses and that the genetic manipulation of KUF1 in crops is a potential means of enhancing their drought tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Secas , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Água/metabolismo , Plantas Geneticamente Modificadas/metabolismo
17.
Biometrics ; 79(2): 1280-1292, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524490

RESUMO

The proliferation of biobanks and large public clinical data sets enables their integration with a smaller amount of locally gathered data for the purposes of parameter estimation and model prediction. However, public data sets may be subject to context-dependent confounders and the protocols behind their generation are often opaque; naively integrating all external data sets equally can bias estimates and lead to spurious conclusions. Weighted data integration is a potential solution, but current methods still require subjective specifications of weights and can become computationally intractable. Under the assumption that local data are generated from the set of unknown true parameters, we propose a novel weighted integration method based upon using the external data to minimize the local data leave-one-out cross validation (LOOCV) error. We demonstrate how the optimization of LOOCV errors for linear and Cox proportional hazards models can be rewritten as functions of external data set integration weights. Significant reductions in estimation error and prediction error are shown using simulation studies mimicking the heterogeneity of clinical data as well as a real-world example using kidney transplant patients from the Scientific Registry of Transplant Recipients.


Assuntos
Modelos Estatísticos , Projetos de Pesquisa , Humanos , Modelos de Riscos Proporcionais , Simulação por Computador , Viés
18.
Endocr Pract ; 29(11): 862-867, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611751

RESUMO

OBJECTIVE: To examine the extent to which metformin increases the risk of vitamin B12 deficiency and borderline deficiency over time in participants with type 2 diabetes mellitus (T2DM). METHODS: Using the All of Us database, adults aged ≥18 years with T2DM and a documented history of metformin use were included for the evaluation of B12 deficiency. Those with B12 deficiency before metformin use were excluded. Adjusted logistic regression models were used to evaluate the association between metformin use and long-term metformin use (≥4 years) and the risk of B12 deficiency. We conducted a subgroup analysis comparing differences in borderline B12 deficiency in metformin and non-metformin users. RESULTS: Of 36 740 participants with T2DM, 6221 (16.9%) had documented metformin use. The mean age of metformin users was 65.3 years. B12 deficiency was confirmed in 464 (7.5%) metformin users, and 1919 of 30 519 participants (6.3%) did not use metformin. Metformin users had a 4.7% increased risk of developing B12 deficiency compared with nonmetformin users (P = .44). Each additional year of metformin use was associated with 5% increased likelihood of deficiency (P < .05). Metformin use for ≥4 years resulted in a 41.0% increased odds of B12 deficiency, compared with those who used <4 years of metformin (P < .05). Metformin use increased the odds of borderline B12 deficiency by 27.0% (P < .05). CONCLUSION: Long-term metformin use was associated with an increased risk of B12 deficiency in patients with T2DM, with compounding risk over time.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Saúde da População , Deficiência de Vitamina B 12 , Adulto , Humanos , Adolescente , Idoso , Metformina/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Hipoglicemiantes/efeitos adversos , Deficiência de Vitamina B 12/induzido quimicamente , Deficiência de Vitamina B 12/epidemiologia , Deficiência de Vitamina B 12/complicações
19.
Plant Cell Rep ; 42(11): 1757-1776, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37674059

RESUMO

KEY MESSAGE: The novel interkingdom PGPM consortia enhanced the ability of plant growth promotion and disease resistance, which would be beneficial to improve plant growth in sustainable agriculture through engineering microbiome. Plant growth-promoting microbes (PGPMs) play important roles in promoting plant growth and bio-controlling of pathogens. Much information reveals that the plant growth-promoting ability of individual PGPM affects plant growth. However, the effects of the PGPM consortia properties on plant growth remain largely unexplored. Here, we characterized three new PGPM strains including Rhodotorula graminis JJ10.1 (termed as J), Pseudomonas psychrotolerans YY7 (termed as Y) and P. chlororaphis T8 (termed as T), and assessed their effects in combination with Bacillus amyloliquefaciens FZB42 (termed as F) on plant growth promotion and disease prevention in Arabidopsis thaliana and tomato (Solanum lycopersicum) plants by investigating morphological changes, whole-genome sequencing and plant growth promoting (PGP) characterization. Results revealed that the three new strains R. graminis JJ10.1, P. psychrotolerans YY7 and P. chlororaphis T8 had the potential for being combined with B. amyloliquefaciens FZB42 to form interkingdom PGPM consortia. The combinations of R. graminis JJ10.1, B. amyloliquefaciens FZB42, and P. psychrotolerans YY7, i. e. JF and JYF, exhibited the strongest ability of synergetic biofilm production. Furthermore, the growth-promotion abilities of the consortia were significantly enhanced compared with those of individual strains under both inoculation and volatile organic compounds (VOCs) treatment. Importantly, the consortia showed stronger abilities of in planta disease prevention than individual strains. Findings of our study may provide future guidance for engineering the minimal microbiome communities to improve plant growth and/or disease resistance in sustainable agriculture.


Assuntos
Arabidopsis , Solanum lycopersicum , Resistência à Doença , Desenvolvimento Vegetal
20.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139074

RESUMO

With the growing global population, abiotic factors have emerged as a formidable threat to agricultural food production. If left unaddressed, these stress factors might reduce food yields by up to 25% by 2050. Plants utilize natural mechanisms, such as reactive oxygen species scavenging, to mitigate the adverse impacts of abiotic stressors. Diverse plants exhibit unique adaptations to abiotic stresses, which are regulated by phytohormones at various levels. Brassinosteroids (BRs) play a crucial role in controlling essential physiological processes in plants, including seed germination, xylem differentiation, and reproduction. The BR cascade serves as the mechanism through which plants respond to environmental stimuli, including drought and extreme temperatures. Despite two decades of research, the complex signaling of BRs under different stress conditions is still being elucidated. Manipulating BR signaling, biosynthesis, or perception holds promise for enhancing crop resilience. This review explores the role of BRs in signaling cascades and summarizes their substantial contribution to plants' ability to withstand abiotic stresses.


Assuntos
Brassinosteroides , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Plantas , Estresse Fisiológico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA