Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1383(2): 197-210, 1998 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-9602126

RESUMO

Serum transferrin is the protein whose primary function is to bind iron and transport it through the blood. Apotransferrin has two specific metal-binding sites that bind a variety of metal ions in addition to the ferric ion. The distinguishing feature of the transferrins is that a "synergistic" bicarbonate anion is bound along with the metal ion to form a stable Fe(3+)-CO3-Tf ternary complex. Previous research has shown that apotransferrin will also bind divalent anions such as phosphate and sulfate. Difference UV spectroscopy has now been used to show that a series of monovalent anions bind weakly to apotransferrin. Equilibrium constants for the binding of chloride, perchlorate, bromide, fluoride and Hepes have been calculated. A reaction scheme for the binding of anions is proposed which predicts that the binding of the nonsynergistic anions to apotransferrin will interfere with metal binding by competing directly with the binding of the synergistic bicarbonate anion. Difference UV data are presented which demonstrate this type of competition between nonsynergistic anions and Tb3+. Competition from the nonsynergistic anions follows the order HPO4(2-) > SO4(2-) approximately F- > ClO4- approximately Cl- approximately Br-. Speciation calculations have been performed to determine the concentrations of anion-apotransferrin complexes in Hepes and Tris buffers and in human serum and to estimate the extent to which competition from anions in the buffer will interfere with metal-binding to apotransferrin.


Assuntos
Ânions/química , Transferrina/química , Humanos , Ligação Proteica , Termodinâmica , Transferrina/metabolismo
2.
Biochim Biophys Acta ; 1430(2): 269-80, 1999 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-10082955

RESUMO

Equilibrium constants for the binding of anions to apotransferrin, to the recombinant N-lobe half transferrin molecule (Tf/2N), and to a series of mutants of Tf/2N have been determined by difference UV titrations of samples in 0.1 M Hepes buffer at pH 7.4 and 25 degrees C. The anions included in this study are phosphate, sulfate, bicarbonate, pyrophosphate, methylenediphosphonic acid, and ethylenediphosphonic acid. There are no significant differences between anion binding to Tf/2N and anion binding to the N-lobe of apotransferrin. The binding of simple anions like phosphate appears to be essentially equivalent for the two apotransferrin binding sites. The binding of pyrophosphate and the diphosphonates is inequivalent, and the studies on the recombinant Tf/2N show that the stronger binding is associated with the N-terminal site. Anion binding constants for phosphate, pyrophosphate, and the diphosphonates with the N-lobe mutants K206A, K296A, and R124A have been determined. Anion binding tends to be weakest for the K296A mutant, but the variation in log K values among the three mutants is surprisingly small. It appears that the side chains of K206, K296, and R124 all make comparable contributions to anion binding. There are significant variations in the intensities of the peaks in the difference UV spectra that are generated by the titrations of the mutant apoproteins with these anions. These differences appear to be related more to variations in the molar extinction coefficients of the anion-protein complexes rather than to differences in binding constants.


Assuntos
Ânions/química , Apoproteínas/química , Transferrina/química , Sítios de Ligação , Difosfatos/química , Difosfonatos/química , Modelos Moleculares , Mutação , Proteínas Recombinantes/química , Espectrofotometria Ultravioleta , Termodinâmica , Transferrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA