Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Environ Sci Technol ; 58(24): 10752-10763, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848107

RESUMO

Groundwater contamination by 1,2,3-trichloropropane (TCP) poses a unique challenge due to its human toxicity and recalcitrance to degradation. Previous work suggests that nitrogenous functional groups of pyrogenic carbonaceous matter (PCM), such as biochar, are important in accelerating contaminant dechlorination by sulfide. However, the reaction mechanism is unclear due, in part, to PCM's structural complexity. Herein, PCM-like polymers (PLPs) with controlled placement of nitrogenous functional groups [i.e., quaternary ammonium (QA), pyridine, and pyridinium cations (py+)] were employed as model systems to investigate PCM-enhanced TCP degradation by sulfide. Our results suggest that both PLP-QA and PLP-py+ were highly effective in facilitating TCP dechlorination by sulfide with half-lives of 16.91 ± 1.17 and 0.98 ± 0.15 days, respectively, and the reactivity increased with surface nitrogenous group density. A two-step process was proposed for TCP dechlorination, which is initiated by reductive ß-elimination, followed by nucleophilic substitution by surface-bound sulfur nucleophiles. The TCP degradation kinetics were not significantly affected by cocontaminants (i.e., 1,1,1-trichloroethane or trichloroethylene), but were slowed by natural organic matter. Our results show that PLPs containing certain nitrogen functional groups can facilitate the rapid and complete degradation of TCP by sulfide, suggesting that similarly functionalized PCM might form the basis for a novel process for the remediation of TCP-contaminated groundwater.


Assuntos
Polímeros , Sulfetos , Sulfetos/química , Polímeros/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Carbono/química , Propano/análogos & derivados
2.
Environ Sci Technol ; 58(2): 1378-1389, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38179651

RESUMO

It has been reported that tripolyphosphate (TPP) can enhance the oxygenation of natural Fe(II)-containing minerals to produce reactive oxygen species (ROS). However, the molecular structure of the TPP-Fe(II) mineral surface complex and the role of this complex in the generation and transformation of ROS have not been fully characterized. In the present study, a heterogeneous magnetite (Fe3O4)/O2/TPP system was developed for the degradation of p-nitrophenol (PNP). The results showed that the addition of TPP significantly accelerated the removal of PNP in the Fe3O4/O2 system and extended the range of effective pH to neutral. Experiments combined with density functional theory calculations revealed that the activation of O2 mainly occurs on the surface of Fe3O4 induced by a structural Fe(II)-TPP complex, where the generated O2•- (intermediate active species) can be rapidly converted into H2O2, and then the •OH generated by the Fenton reaction is released into the solution. This increases the concentration of •OH produced and the efficiency of •OH produced relative to Fe(II) consumed, compared with the homogeneous system. Furthermore, the binding of TPP to the surface of Fe3O4 led to stretching and even cleavage of the Fe-O bonds. Consequently, more Fe(II)/(III) atoms are exposed to the solvation environment and are available for the binding of active O2 and O2•-. This study demonstrates how common iron minerals and O2 in the natural environment can be combined to yield a green remediation technology.


Assuntos
Peróxido de Hidrogênio , Ferro , Polifosfatos , Espécies Reativas de Oxigênio , Ferro/química , Peróxido de Hidrogênio/química , Oxirredução , Minerais , Compostos Ferrosos , Oxigênio
3.
Environ Sci Technol ; 58(5): 2564-2573, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278139

RESUMO

The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 µM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir-Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively.


Assuntos
Cromatos , Poluentes Químicos da Água , Cromatos/química , Magnésio , Ferro/química , Poluentes Químicos da Água/análise , Cromo/análise , Cromo/química , Cinética , Concentração de Íons de Hidrogênio , Adsorção
4.
Environ Sci Technol ; 58(21): 9404-9415, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739946

RESUMO

This study investigated the reaction pathway of 2,4-dinitroanisole (DNAN) on the pyrogenic carbonaceous matter (PCM) to assess the scope and mechanism of PCM-facilitated surface hydrolysis. DNAN degradation was observed at pH 11.5 and 25 °C with a model PCM, graphite, whereas no significant decay occurred without graphite. Experiments were performed at pH 11.5 due to the lack of DNAN decay at pH below 11.0, which was consistent with previous studies. Graphite exhibited a 1.78-fold enhancement toward DNAN decay at 65 °C and pH 11.5 relative to homogeneous solution by lowering the activation energy for DNAN hydrolysis by 54.3 ± 3.9%. This is supported by our results from the computational modeling using Car-Parrinello simulations by ab initio molecular dynamics/molecular mechanics (AIMD/MM) and DFT free energy simulations, which suggest that PCM effectively lowered the reaction barriers by approximately 8 kcal mol-1 compared to a homogeneous solution. Quaternary ammonium (QA)-modified activated carbon performed the best among several PCMs by reducing DNAN half-life from 185 to 2.5 days at pH 11.5 and 25 °C while maintaining its reactivity over 10 consecutive additions of DNAN. We propose that PCM can affect the thermodynamics and kinetics of hydrolysis reactions by confining the reaction species near PCM surfaces, thus making them less accessible to solvent molecules and creating an environment with a weaker dielectric constant that favors nucleophilic substitution reactions. Nitrite formation during DNAN decay confirmed a denitration pathway, whereas demethylation, the preferred pathway in homogeneous solution, produces 2,4-dinitrophenol (DNP). Denitration catalyzed by PCM is advantageous to demethylation because nitrite is less toxic than DNAN and DNP. These findings provide critical insights for reactive adsorbent design that has broad implications for catalyst design and pollutant abatement.


Assuntos
Anisóis , Hidrólise , Anisóis/química , Simulação de Dinâmica Molecular , Carbono/química
5.
Chem Rev ; 121(13): 8161-8233, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34143612

RESUMO

Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.

6.
Environ Sci Technol ; 57(26): 9811-9821, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37339398

RESUMO

Chloroform (CF) is a widely used chemical reagent and disinfectant and a probable human carcinogen. The extensive literature on halocarbon reduction with zerovalent iron (ZVI) shows that transformation of CF is slow, even with nano, bimetallic, sulfidated, and other modified forms of ZVI. In this study, an alternative method of ZVI modification─involving simultaneous sulfidation and nitridation through mechanochemical ball milling─was developed and shown to give improved degradation of CF (i.e., higher degradation rate and inhibited H2 evolution reaction). The composite material (denoted as S-N(C)-ZVI) gave synergistic effects of nitridation and sulfidation on CF degradation. A complete chemical reaction network (CRN) analysis of CF degradation suggests that O-nucleophile-mediated transformation pathways may be the main route for the formation of the terminal nonchlorinated products (formate, CO, and glycolic polymers) that have been used to explain the undetected products needed for mass balance. Material characterizations of the ZVI recovered after batch experiments showed that sulfidation and nitridation promoted the formation of Fe3O4 on the S-N(C)-ZVI particles, and the effect of aging on CF degradation rates was minor for S-N(C)-ZVI. The synergistic benefits of sulfidation and nitridation on CF degradation were also observed in experiments performed with groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Ferro/química , Clorofórmio , Cinética
7.
Phys Chem Chem Phys ; 25(36): 24745-24760, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671434

RESUMO

To successfully understand and model the environmental fate of per- and polyfluoroalkyl substances (PFAS), it is necessary to know key physicochemical properties (PChPs) such as pKa; however, measured PChPs of PFAS are scarce and of uncertain reliability. In this study, quantitative structure-activity relationships (QSARs) were developed by correlating calculated (M062-X/aug-cc-pVDZ) vibrational frequencies (VF) and corresponding infrared intensities (IRInt) to the pKa of carboxylic acids, sulfonic acids, phosphonic acids, sulfonamides, betaines, and alcohols. Antisymmetric stretching VF of the anionic species were used for all subclasses except for alcohols where the OH stretching VF performed better. The individual QSARs predicted the pKa for each subclass mostly within 0.5 pKa units from the experimental values. The inclusion of IRInt as a pKa predictor for carboxylic acids improved the results by decreasing the root-mean-square error from 0.35 to 0.25 (n > 100). Application of the developed QSARs to estimate the pKa of PFAS within each subclass revealed that the length of the perfluoroalkyl chain has minimal effect on the pKa, consistent with other models but in stark contrast with the limited experimental data available.

8.
Environ Sci Technol ; 56(7): 4367-4376, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35275631

RESUMO

Tripolyphosphate (TPP) has many advantages as a ligand for the optimization of the Fe2+/O2 system in environmental remediation applications. However, the relationship between remediation performance and the Fe2+/TPP ratio in the system has not been previously described. In this study, we report that the degradation mechanism of p-nitrophenol (PNP) in Fe2+/O2 systems is regulated by the Fe2+/TPP ratio under neutral conditions. The results showed that although PNP was effectively degraded at different Fe2+/TPP ratios, the results of specific reactive oxygen species (ROS) scavenging experiments and the determination of PNP degradation products showed that the mechanism of PNP degradation varies with the Fe2+/TPP ratio. When CFe2+ ≥ CTPP, the initially formed O2•- is converted to •OH and the •OH degrades PNP by oxidation. However, when CFe2+ < CTPP, the O2•- persists long enough to degrade PNP by reduction. Density functional theory (DFT) calculations revealed that the main reactive species of Fe2+ in the system include [Fe(TPP)(H2O)3]- and [Fe(TPP)2]4-, whose content in the solution is the key to achieve system regulation. Consequently, by controlling the Fe2+/TPP ratio in the solution, the degradation pathways of PNP can be selected. Our study proposed a new strategy to regulate the oxidation/reduction removal of pollutants by simply varying the Fe2+/TPP ratio of the Fe2+/O2 system.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Oxirredução , Oxigênio , Polifosfatos , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/análise
9.
J Phys Chem A ; 126(48): 9059-9075, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36417759

RESUMO

Hydrolysis is a common transformation reaction that can affect the environmental fate of many organic compounds. In this study, three proposed mechanisms of alkaline hydrolysis of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroaniline (DNAN) were investigated with plane-wave density functional theory (DFT) combined with ab initio and classical molecular dynamics (AIMD/MM) free energy simulations, Gaussian basis set DFT calculations, and correlated molecular orbital theory calculations. Most of the computations in this study were carried out using the Arrows web-based tools. For each mechanism, Meisenheimer complex formation, nucleophilic aromatic substitution, and proton abstraction reaction energies and activation barriers were calculated for the reaction at each relevant site. For TNT, it was found that the most kinetically favorable first hydrolysis steps involve Meisenheimer complex formation by attachment of OH- at the C1 and C3 arene carbons and proton abstraction from the methyl group. The nucleophilic aromatic substitution reactions at the C2 and C4 arene carbons were found to be thermodynamically favorable. However, the calculated activation barriers were slightly lower than in previous studies, but still found to be ΔG‡ ≈ 18 kcal/mol using PBE0 AIMD/MM free energy simulations, suggesting that the reactions are not kinetically significant. For DNAN, the barriers of nucleophilic aromatic substitution were even greater (ΔG‡ > 29 kcal/mol PBE0 AIMD/MM). The most favorable hydrolysis reaction for DNAN was found to be a two-step process in which the hydroxyl first attacks the C1 carbon to form a Meisenheimer complex at the C1 arene carbon C1-(OCH3)OH-, and subsequently, the methoxy anion (-OCH3) at the C1 arene carbon dissociates and the proton shuttles from the C1-OH to the dissociated methoxy group, resulting in methanol and an aryloxy anion.


Assuntos
Trinitrotolueno , Teoria da Densidade Funcional , Prótons
10.
Environ Sci Technol ; 55(8): 5393-5402, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33729752

RESUMO

FeNX in Fe single-atom catalysts can be the active site for adsorption and activation of reactants. In addition, FeNX species have been shown to facilitate electron transfer between Fe and the carbon supports used in newly developed metal-air batteries. We hypothesized that the combination of FeNX species with granular zero-valent iron (ZVI) might result in catalyzed reductive decontamination of groundwater contaminants such as trichloroethylene (TCE). Here, such materials synthesized by ball milling microscale ZVI with melamine and the resulting N species were mainly in the form of pyridinic, pyrrolic, and graphitic N. This new material (abbreviated as N-C-mZVIbm) dechlorinated TCE at higher rates than bare mZVIbm (about 3.5-fold) due to facilitated electron transfer through (or around) the surface layer of iron oxides by the newly formed Fe-NX(C). N-C-mZVIbm gave higher kTCE (0.4-1.14 day-1) than mZVIbm (0-0.4 day-1) over a wide range of pH values (4-11). Unlike most ZVI systems, kTCE for N-C-mZVIbm increased with increasing pH values. This is because the oxide layer that passivates Fe0 at a high pH is disrupted by Fe-NX(C) formed on N-C-mZVIbm, thereby allowing TCE dechlorination and HER under basic conditions. Serial respike experiments gave no evidence of decreased performance of N-C-mZVIbm, showing that the advantages of this material might remain under field applications.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Concentração de Íons de Hidrogênio , Ferro , Tricloroetileno/análise , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 55(10): 6828-6837, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33929820

RESUMO

Zero valent iron (ZVI) applications to remediation of shallow groundwaters can be affected by dissolved oxygen (DO) and organic ligands. To explore the intersection between these complicating factors, this study thoroughly characterized the reactions of nitrobenzene (NB) with ZVI in the presence DO and the model ligand ethylene diamine tetraacetic acid (EDTA). The results showed that NB is degraded by both ZVI reduction and ZVI-induced advanced oxidation under oxygen-limited conditions. The contribution of ·OH to the degradation of NB increased with time so that nearly 39% of NB was oxidized by ·OH at 15 min (pH = 3), but reduction was still the main pathway of NB transformation throughout. NB reduction products, such as aniline (AN), were also oxidized by ·OH. The lower the pH, the greater the contribution of advanced oxidation, but DO was the limiting factor for ·OH generation. Only 4.7% NB was fully degraded by ring opening and/or mineralization because the production of •OH was limited by low DO. After the transformation of NB and AN, other benzene ring and nitrogen-containing intermediates were identified (e.g., p-nitrophenol, p-aminophenol, hydroquinone, and p-benzoquinone). The removal of total organic carbon and total organic nitrogen was minimal. The results suggested that the relative doses of ZVI, DO, and iron-complexing ligands can be balanced for the optimal (rapid and deep) removal of organic contaminants.


Assuntos
Ferro , Poluentes Químicos da Água , Ácido Edético , Etilenos , Nitrobenzenos/análise , Oxirredução , Poluentes Químicos da Água/análise
12.
Environ Sci Technol ; 55(1): 645-654, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33302625

RESUMO

Sulfidation can enhance both the reactivity and selectivity (i.e., electron efficiency, εe) of zero-valent iron (ZVI) in contaminant removal, which may make this technology cost-effective for a wider range of water treatment applications. However, current sulfidation methods involve either hazardous or unstable sulfidation agents (e.g., Na2S, Na2S2O3, and Na2S2O4) or energy-intensive preparations (e.g., mechanochemical sulfidation with elemental sulfur). In this study, we demonstrate that very efficient sulfidation of microscale ZVI (mZVI) can be achieved at all S/Fe molar ratios (∼100% sulfidation efficiency, εs) simply by direct reaction between elemental sulfur (S0) and ZVI in an aqueous suspension at ambient temperature. In comparison, the εs values obtained using Na2S, Na2S2O3, or Na2S2O4 as the sulfidation agents were only ∼23, ∼75, and ∼38%, respectively. The sulfidated mZVI produced using the new method reacts with trichloroethylene (TCE) with very high rates and electron efficiencies: rate constants and electron efficiencies were 800- and 79-fold higher than those of the unsulfidated mZVI. The enhanced performance of this material, together with the operational advantages of S0 for sulfidation (including safety, stability, and cost), may make it a desirable product for full-scale engineering applications.


Assuntos
Tricloroetileno , Poluentes Químicos da Água , Ferro , Enxofre , Água
13.
Environ Sci Technol ; 53(16): 9744-9754, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31343874

RESUMO

Competition among oxidizing species in groundwater and wastewater for the reductive capacity of zerovalent iron (ZVI) makes the selectivity of ZVI for target contaminant degradation over other reduction pathways a major determinant of the feasibility of ZVI-based water treatment processes. The selectivity for reduction of contaminants over water is improved by sulfidation, but the effect of sulfidation on other competing reactions is not known. The interaction between these competing reactions was investigated using N-nitrosodimethylamine (NDMA) as the target contaminant, nitrate as a co-contaminant, and micrometer-sized ZVI with and without sulfidation. Unsulfidated ZVI reduced NDMA to dimethylamine via N,N-dimethylhydrazine, but the addition of nitrate decreased the rate of NDMA reduction and increased the quantity of intermediate observed. With sulfidated ZVI, the kinetics and products of NDMA reduction were similar to those with unsulfidated ZVI, but no inhibitory effect of nitrate was observed. Conversely, the reduction of nitrate-which dominated NDMA reduction in unsulfidated ZVI systems-was strongly inhibited by sulfidation. H2 and Fe2+ generation by sulfidated ZVI was almost independent of nitrate concentration. Therefore, sulfidation improved the efficiency of NDMA reduction by ZVI in the presence of nitrate mainly by inhibiting nitrate reduction. The shift in selectivity of ZVI for NDMA over nitrate upon sulfidation was due to replacement of Fe0/FexOy surface sites with FeS.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Ferro , Nitratos
14.
Environ Sci Technol ; 53(19): 11232-11239, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469553

RESUMO

Quinones are important electron shuttles as well as micropollutants in the nature. Acetylacetone (AA) is a newly recognized electron shuttle in aqueous media exposed to UV irradiation. Herein, we studied the interactions between AA and hydroquinone (QH2) under steady-state and transient photochemical conditions to clarify the possible reactions and consequences if QH2 and AA coexist in a solution. Steady-state experimental results demonstrate that the interactions between AA and QH2 were strongly affected by dissolved oxygen. In O2-rich solutions, the phototransformation of QH2 was AA-independent. Both QH2 and AA utilize O2 as the electron acceptor, but in O2-insufficient solutions, AA became an important electron acceptor for the oxidation of QH2. In all cases, the coexistence of AA increased the phototransformation of QH2, whereas the decomposition of AA in O2-saturated and oversaturated solutions was inhibited by the presence of QH2. The underlying mechanisms were investigated by a combination of laser flash photolysis (LFP) and reduction potential analysis. The LFP results show that the excited AA serves as a better electron shuttle than QH2. As a consequence, AA might regulate the redox cycling of quinones, leading to significant effects on many processes, ranging from photosynthesis and respiration to photodegradation.


Assuntos
Hidroquinonas , Fármacos Fotossensibilizantes , Elétrons , Oxirredução , Pentanonas , Fotólise
15.
Environ Sci Technol ; 53(4): 2054-2062, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30688439

RESUMO

Research efforts on advanced oxidation processes (AOPs) have long been focused on the fundamental chemistry of activation processes and free radical reactions. Little attention has been paid to the chemistry of the precursor oxidants. Herein, we found that the precursor oxidants could lead to quite different outcomes. A counterintuitive result was observed in the photoreduction of bromate/iodate: the combination of H2O2 and UV enhanced the reduction of bromate/iodate, whereas the addition of persulfate to the UV system led to an inhibitory effect. Thermodynamic and kinetic evidence suggests that the reduction of bromate in UV/H2O2 was attributable to the direct reaction between HOBr and H2O2. Both experimental determination and kinetic simulation demonstrate that the reaction between HOBr and H2O2 dominated over the •OH-mediated reactions. These results suggest that H2O2 possesses some particular redox properties that distinguish it from other peroxides. The prototypical UV/H2O2 process is not always an AOP: it can also be an enhanced reduction process for chemicals with intermediates that are reducible by H2O2. Considering the increasing interest in persulfate-based AOPs, the results of this study identify some novel advantages of the classical H2O2-based AOPs.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Peróxidos , Raios Ultravioleta
16.
Microsc Microanal ; 25(1): 80-91, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30698125

RESUMO

Adding Au to Pd nanoparticles (NPs) can impart high catalytic activity with respect to hydrogenation of a wide range of substances. These materials are often synthesized by reducing metallic precursors; hence, sonochemical and solvothermal processes are commonly used to anchor these bimetals onto thin supports, including graphene. Although similar NPs have been studied reasonably well, a clear understanding of structural characteristics relative to their synthesis parameters is lacking, due to limitations in characterization techniques, which may prevent optimization of this very promising catalyst. In this report, a strategic approach has been used to identify this structural and material synthesis correlation, starting with controlled sample preparation and followed by detailed characterization. This includes advanced scanning transmission electron microscopy and electron energy loss spectroscopy; the latter using a state-of-the-art instrumentation to map the distribution of Pd and Au, and to identify chemical state of the Pd NPs, which has not been previously reported. Results show that catalytic bimetal NP clusters were made of small zero-valent Pd NPs aggregating to form a shell around an Au core. Not only can the described characterization approach be applied to similar material systems, but the results can guide the optimization of the synthesis procedures.


Assuntos
Catálise , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Paládio/classificação , Estrutura Molecular , Tamanho da Partícula , Solventes , Propriedades de Superfície
17.
Environ Sci Technol ; 52(23): 13887-13896, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30381947

RESUMO

The hydrogen evolution reaction (HER) that generates H2 from the reduction of H2O by Fe0 is among the most fundamental of the processes that control reactivity in environmental systems containing zerovalent iron (ZVI). To develop a comprehensive kinetic model for this process, a large and high-resolution data set for HER was measured using five types of ZVI pretreated by acid-washing and/or sulfidation (in pH 7 HEPES buffer). The data were fit to four alternative kinetic models using nonlinear regression analysis applied to the whole data set simultaneously, which allowed some model parameters to be treated globally across multiple experiments. The preferred model uses two independent reactive phases to match the two-stage character of most HER data, with rate constants ( k's) for each phase fitted globally by iron type and phase quantities ( S's) fitted as fully local (independent) parameters. The first, faster stage was attributed to a reactive mineral intermediate (RMI) phase like Fe(OH)2, which may form in all experiments during preequilibration, but is rapidly consumed, leaving the second, slower stage of HER, which is due to reaction of Fe0. In addition to providing a deterministic model to explain the kinetics of HER by ZVI over a wide range of conditions, the results provide an improved quantitative basis for comparing the effects of sulfidation on ZVI.


Assuntos
Hidrogênio , Ferro , Cinética
18.
Environ Sci Technol ; 51(21): 12653-12662, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28984446

RESUMO

In water treatment processes that involve contaminant reduction by zerovalent iron (ZVI), reduction of water to dihydrogen is a competing reaction that must be minimized to maximize the efficiency of electron utilization from the ZVI. Sulfidation has recently been shown to decrease H2 formation significantly, such that the overall electron efficiency of (or selectivity for) contaminant reduction can be greatly increased. To date, this work has focused on nanoscale ZVI (nZVI) and solution-phase sulfidation agents (e.g., bisulfide, dithionite or thiosulfate), both of which pose challenges for up-scaling the production of sulfidated ZVI for field applications. To overcome these challenges, we developed a process for sulfidation of microscale ZVI by ball milling ZVI with elemental sulfur. The resulting material (S-mZVIbm) exhibits reduced aggregation, relatively homogeneous distribution of Fe and S throughout the particle (not core-shell structure), enhanced reactivity with trichloroethylene (TCE), less H2 formation, and therefore greatly improved electron efficiency of TCE dechlorination (εe). Under ZVI-limited conditions (initial Fe0/TCE = 1.6 mol/mol), S-mZVIbm gave surface-area normalized reduction rate constants (k'SA) and εe that were ∼2- and 10-fold greater than the unsulfidated ball-milled control (mZVIbm). Under TCE-limited conditions (initial Fe0/TCE = 2000 mol/mol), sulfidation increased kSA and εe ≈ 5- and 50-fold, respectively. The major products from TCE degradation by S-mZVIbm were acetylene, ethene, and ethane, which is consistent with dechlorination by ß-elimination, as is typical of ZVI, iron oxides, and/or sulfides. However, electrochemical characterization shows that the sulfidated material has redox properties intermediate between ZVI and Fe3O4, mostly likely significant coverage of the surface with FeS.


Assuntos
Tricloroetileno , Purificação da Água , Halogenação , Ferro , Cinética
19.
Environ Sci Technol ; 51(22): 13070-13085, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29035566

RESUMO

Iron-based materials used in water treatment and groundwater remediation-especially micro- and nanosized zerovalent iron (nZVI)-can be more effective when modified with lower-valent forms of sulfur (i.e., "sulfidated"). Controlled sulfidation for this purpose (using sulfide, dithionite, etc.) is the main topic of this review, but insights are derived by comparison with related and comparatively well-characterized processes such as corrosion of iron in sulfidic waters and abiotic natural attenuation by iron sulfide minerals. Material characterization shows that varying sulfidation protocols (e.g., concerted or sequential) and key operational variables (e.g., S/Fe ratio and sulfidation duration) result in materials with structures and morphologies ranging from core-shell to multiphase. A meta-analysis of available kinetic data for dechlorination under anoxic conditions, shows that sulfidation usually increases dechlorination rates, and simultaneously hydrogen production is suppressed. Therefore, sulfidation can greatly improve the efficiency of utilization of reducing equivalents for contaminant removal. This benefit is most likely due to inhibited corrosion as a result of sulfidation. Sulfidation may also favor desirable pathways of contaminant removal, such as (i) dechlorination by reductive elimination rather than hydrogenolysis and (ii) sequestration of metals as sulfides that could be resistant to reoxidation. Under oxic conditions, sulfidation is shown to enhance heterogeneous catalytic oxidation of contaminants. These net effects of sulfidation on contaminant removal by iron-based materials may substantially improve their practical utility for water treatment and remediation of contaminated groundwater.


Assuntos
Ferro , Purificação da Água , Água Subterrânea , Halogenação , Sulfetos , Poluentes Químicos da Água
20.
Environ Sci Technol ; 50(17): 9558-65, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27454131

RESUMO

The high reactivity of nano zerovalent iron (nZVI) leads to inefficient treatment due to competition with various natural reductant demand (NRD) processes, especially the reduction of water to hydrogen. Here we show that this limitation can be alleviated by sulfidation (i.e., modification by reducing sulfur compounds). nZVI synthesized on carboxylmethylcelluose (CMC-nZVI) was sulfidated with either sulfide or dithionite. The reactivity of the resulting materials was examined with three complementary assays: (i) direct measurement of hydrogen production, (ii) reduction of a colorimetric redox probe (indigo disulfonate, I2S), and (iii) dechlorination of trichloroethylene (TCE). The results indicate that sulfidation at S/Fe molar ratios of ≥0.3, effectively eliminates reaction with water, but retains significant reactivity with TCE. However, sulfidation with sulfide leaves most of the nZVI as Fe(0), whereas dithionite converts a majority of the nZVI to FeS (thus consuming much of the reducing capacity originally provided by the Fe(0)). Simplified numerical models show that the reduction kinetics of I2S and TCE are mainly dependent on the initial reducing equivalents and that the TCE reduction rate is affected by the aging of FeS. Overall, the results suggest that pretreatment of nZVI with reducing sulfur compounds could result in substantial improvement in nZVI selectivity.


Assuntos
Ferro/química , Tricloroetileno/química , Halogenação , Cinética , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA