Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biochem Biophys Res Commun ; 590: 103-108, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974297

RESUMO

Calcium (Ca2+) signaling represents a universal information code in plants, playing crucial roles spanning developmental processes to stress responses. Ca2+ signals are decoded into defined plant adaptive responses by different Ca2+ sensing proteins, including calmodulin (CaM) and calmodulin-like (CML) proteins. Although major advances have been achieved in describing how these Ca2+ decoding proteins interact and regulate downstream target effectors, the molecular details of these processes remain largely unknown. Herein, the kinetics of Ca2+ dissociation from a conserved CaM and two CML isoforms from A. thaliana has been studied by fluorescence stopped-flow spectroscopy. Kinetic data were obtained for the isolated Ca2+-bound proteins as well as for the proteins complexed with different target peptides. Moreover, the lobe specific interactions between the Ca2+ sensing proteins and their targets were characterized by using a panel of protein mutants deficient in Ca2+ binding at the N-lobe or C-lobe. Results were analyzed and discussed in the context of the Ca2+-decoding and Ca2+-controlled target binding mechanisms in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Peptídeos/metabolismo , Arabidopsis/efeitos dos fármacos , Cinética , Meliteno/farmacologia , Proteínas Mutantes/metabolismo
2.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293035

RESUMO

The K-homology (KH) domains are small, structurally conserved domains found in proteins of different origins characterized by a central conserved ßααß "core" and a GxxG motif in the loop between the two helices of the KH core. In the eukaryotic KHI type, additional αß elements decorate the "core" at the C-terminus. Proteins containing KH domains perform different functions and several diseases have been associated with mutations in these domains, including those in the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein crucial for the control of RNA metabolism whose lack or mutations lead to fragile X syndrome (FXS). Among missense mutations, the R138Q substitution is in the KH0 degenerated domain lacking the classical GxxG motif. By combining equilibrium and kinetic experiments, we present a characterization of the folding mechanism of the KH0 domain from the FMRP wild-type and of the R138Q variant showing that in both cases the folding mechanism implies the accumulation of an on-pathway transient intermediate. Moreover, by exploiting a battery of biophysical techniques, we show that the KH0 domain has the propensity to form amyloid-like aggregates in mild conditions in vitro and that the R138Q mutation leads to a general destabilization of the protein and to an increased fibrillogenesis propensity.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Mutação de Sentido Incorreto , Proteínas/metabolismo , RNA/metabolismo
3.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073056

RESUMO

Bromodomains (BRDs) are small protein interaction modules of about 110 amino acids that selectively recognize acetylated lysine in histones and other proteins. These domains have been identified in a variety of multi-domain proteins involved in transcriptional regulation or chromatin remodeling in eukaryotic cells. BRD inhibition is considered an attractive therapeutic approach in epigenetic disorders, particularly in oncology. Here, we present a Φ value analysis to investigate the folding pathway of the second domain of BRD2 (BRD2(2)). Using an extensive mutational analysis based on 25 site-directed mutants, we provide structural information on both the intermediate and late transition state of BRD2(2). The data reveal that the C-terminal region represents part of the initial folding nucleus, while the N-terminal region of the domain consolidates its structure only later in the folding process. Furthermore, only a small number of native-like interactions have been identified, suggesting the presence of a non-compact, partially folded state with scarce native-like characteristics. Taken together, these results indicate that, in BRD2(2), a hierarchical mechanism of protein folding can be described with non-native interactions that play a significant role in folding.


Assuntos
Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Fatores de Transcrição/química , Cinética , Domínios Proteicos , Estrutura Terciária de Proteína
4.
Phys Chem Chem Phys ; 18(35): 24537-48, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27538920

RESUMO

In this paper, we have studied the equilibrium unfolding transitions of cytochrome c from Pseudomonas aeruginosa (cytc551), a small bacterial protein. Similar to eukaryotic cytochrome c, cytc551 folds sequentially, although significant differences exist in the order of folding units (foldons). There are two regions of cytc551 (N-terminal helix with residue number 3 to 10 and the loop 2 region containing residues 34 to 45), in which no foldon unit could be assigned. In addition, the helix containing the Cys-X-X-Cys-His motif, adjacent to the N-terminal helix (residue number 3 to 10), shows unexplained ultra-fast collapse. To obtain further insights, we have studied cytc551 site-directed mutants using fluorescence correlation spectroscopy (FCS) and molecular dynamics simulation. We have found out that cytc551 unfolds through the formation of a fluorescently dark intermediate state and the amplitude of the dark component depends on the position of labeling. We have utilized this position dependence to propose a shape change model during the unfolding of cytc551. The present results show that the N-terminal helix remains in a collapsed position even in the completely unfolded state and this helix may act as a rigid support to guide the folding of its adjacent helix. This rigid support may be responsible for the ultra-fast collapse of the adjacent helix region, which occurs during the initial events of folding. The present results also show that the C-terminal end of loop 2 traverses a large distance during unfolding compared to the N-terminal end, which justifies the observed flexibility of the loop 2 region.

5.
Proc Natl Acad Sci U S A ; 109(44): 17772-6, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22652570

RESUMO

Much experimental work has been devoted in comparing the folding behavior of proteins sharing the same fold but different sequence. The recent design of proteins displaying very high sequence identities but different 3D structure allows the unique opportunity to address the protein-folding problem from a complementary perspective. Here we explored by Φ-value analysis the pathways of folding of three different heteromorphic pairs, displaying increasingly high-sequence identity (namely, 30%, 77%, and 88%), but different structures called G(A) (a 3-α helix fold) and G(B) (an α/ß fold). The analysis, based on 132 site-directed mutants, is fully consistent with the idea that protein topology is committed very early along the pathway of folding. Furthermore, data reveals that when folding approaches a perfect two-state scenario, as in the case of the G(A) domains, the structural features of the transition state appear very robust to changes in sequence composition. On the other hand, when folding is more complex and multistate, as for the G(B)s, there are alternative nuclei or accessible pathways that can be alternatively stabilized by altering the primary structure. The implications of our results in the light of previous work on the folding of different members belonging to the same protein family are discussed.


Assuntos
Dobramento de Proteína , Proteínas/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas/química , Proteínas/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Relação Estrutura-Atividade
6.
Biochim Biophys Acta ; 1834(8): 1554-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23648553

RESUMO

The biogenesis of c-type cytochromes (Cytc) is a process that in Gram-negative bacteria demands the coordinated action of different periplasmic proteins (CcmA-I), whose specific roles are still being investigated. Activities of Ccm proteins span from the chaperoning of heme b in the periplasm to the specific reduction of oxidized apocytochrome (apoCyt) cysteine residues and to chaperoning and recognition of the unfolded apoCyt before covalent attachment of the heme to the cysteine thiols can occur. We present here the functional characterization of the periplasmic domain of CcmI from the pathogen Pseudomonas aeruginosa (Pa-CcmI*). Pa-CcmI* is composed of a TPR domain and a peculiar C-terminal domain. Pa-CcmI* fulfills both the ability to recognize and bind to P. aeruginosa apo-cytochrome c551 (Pa-apoCyt) and a chaperoning activity towards unfolded proteins, as it prevents citrate synthase aggregation in a concentration-dependent manner. Equilibrium and kinetic experiments with Pa-CcmI*, or its isolated domains, with peptides mimicking portions of Pa-apoCyt sequence allow us to quantify the molecular details of the interaction between Pa-apoCyt and Pa-CcmI*. Binding experiments show that the interaction occurs at the level of the TPR domain and that the recognition is mediated mainly by the C-terminal sequence of Pa-apoCyt. The affinity of Pa-CcmI* to full-length Pa-apoCyt or to its C-terminal sequence is in the range expected for a component of a multi-protein complex, whose task is to receive the apoCyt and to deliver it to other components of the apoCyt:heme b ligation protein machinery.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/metabolismo , Citocromos c/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Pseudomonas aeruginosa/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dicroísmo Circular , Grupo dos Citocromos c/genética , Citocromos c/genética , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos/genética , Ligação Proteica , Termodinâmica
7.
Biochem Biophys Rep ; 39: 101803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39175664

RESUMO

GRB2, or Growth Factor Receptor-Bound Protein 2, is a pivotal adaptor protein in intracellular signal transduction pathways, particularly within receptor tyrosine kinase (RTK) signaling cascades. Its crystal structure reveals a modular architecture comprising a single Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains, facilitating dynamic interactions critical for cellular signaling. While SH2 domains recognize phosphorylated tyrosines, SH3 domains bind proline-rich sequences, enabling GRB2 to engage with various downstream effectors. Folding and binding studies of GRB2 in its full-length form and isolated domains highlight a complex interplay between its protein-protein interaction domains on the folding energy landscape and in driving its function. Being at the crosslink of many key molecular pathways in the cell, GRB2 possesses a role in cancer pathogenesis, particularly in mediating the Ras-mitogen activated protein kinase (MAPK) pathway. Thus, pharmacological targeting of GRB2 domains is a promising field in cancer therapy, with efforts focused on disrupting protein-protein interactions. However, the dynamic interplay driving GRB2 function suggests the presence of allosteric sites at the interface between domains that could be targeted to modulate the binding properties of its constituent domains. We propose that the analysis of GRB2 proteins from other species may provide additional insights to make the allosteric pharmacological targeting of GRB2 a more feasible strategy.

8.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141019, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641086

RESUMO

The Fragile X messenger ribonucleoprotein (FMRP) is a multi-domain protein involved in interactions with various macromolecules, including proteins and coding/non-coding RNAs. The three KH domains (KH0, KH1 and KH2) within FMRP are recognized for their roles in mRNA binding. In the context of Fragile X syndrome (FXS), over-and-above CGG triplet repeats expansion, three specific point mutations have been identified, each affecting one of the three KH domains (R138QKH0, G266EKH1, and I304NKH2) resulting in the expression of non-functional FMRP. This study aims to elucidate the molecular mechanism underlying the loss of function associated with the G266EKH1 pathological variant. We investigate the conformational and dynamic properties of the isolated KH1 domain and the two KH1 site-directed mutants G266EKH1 and G266AKH1. Employing a combined in vitro and in silico approach, we reveal that the G266EKH1 variant lacks the characteristic features of a folded domain. This observation provides an explanation for functional impairment observed in FMRP carrying the G266E mutation within the KH1 domain, as it renders the domain unable to fold properly. Molecular Dynamics simulations suggest a pivotal role for residue 266 in regulating the structural stability of the KH domains, primarily through stabilizing the α-helices of the domain. Overall, these findings enhance our comprehension of the molecular basis for the dysfunction associated with the G266EKH1 variant in FMRP.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/química , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Domínios Proteicos , Simulação de Dinâmica Molecular , Conformação Proteica , Mutagênese Sítio-Dirigida
9.
Plant Physiol Biochem ; 203: 108003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717348

RESUMO

Plasma membrane-associated Cation-binding Protein 1 (PCaP1) belongs to the plant-unique DREPP protein family with largely unknown biological functions but ascertained roles in plant development and calcium (Ca2+) signaling. PCaP1 is anchored to the plasma membrane via N-myristoylation and a polybasic cluster, and its N-terminal region can bind Ca2+/calmodulin (CaM). However, the molecular determinants of PCaP1-Ca2+-CaM interaction and the functional impact of myristoylation in the complex formation and Ca2+ sensitivity of CaM remained to be elucidated. Herein, we investigated the direct interaction between Arabidopsis PCaP1 (AtPCaP1) and CaM1 (AtCaM1) using both myristoylated and non-myristoylated peptides corresponding to the N-terminal region of AtPCaP1. ITC analysis showed that AtCaM1 forms a high affinity 1:1 complex with AtPCaP1 peptides and the interaction is strictly Ca2+-dependent. Spectroscopic and kinetic Ca2+ binding studies showed that the myristoylated peptide dramatically increased the Ca2+-binding affinity of AtCaM1 and slowed the Ca2+ dissociation rates from both the C- and N-lobes, thus suggesting that the myristoylation modulates the mechanism of AtPCaP1 recognition by AtCaM1. Furthermore, NMR and CD spectroscopy revealed that the structure of both the N- and C-lobes of Ca2+-AtCaM1 changes markedly in the presence of the myristoylated AtPCaP1 peptide, which assumes a helical structure in the final complex. Overall, our results indicate that AtPCaP1 biological function is strictly related to the presence of multiple ligands, i.e., the myristoyl moiety, Ca2+ ions and AtCaM1 and only a full characterization of their equilibria will allow for a complete molecular understanding of the putative role of PCaP1 as signal protein.

10.
J Biol Chem ; 286(5): 3863-72, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21118804

RESUMO

The protein folding problem is often studied by comparing the mechanisms of proteins sharing the same structure but different sequence. The recent design of the two proteins G(A)88 and G(B)88, displaying different structures and functions while sharing 88% sequence identity (49 out of 56 amino acids), allows the unique opportunity for a complementary approach. At which stage of its folding pathway does a protein commit to a given topology? Which residues are crucial in directing folding mechanisms to a given structure? By using a combination of biophysical and computational techniques, we have characterized the folding of both G(A)88 and G(B)88. We show that, contrary to expectation, G(B)88, characterized by a native α+ß fold, displays in the denatured state a content of native-like helical structure greater than G(A)88, which is all-α in its native state. Both experiments and simulations indicate that such residual structure may be tuned by changing pH. Thus, despite the high sequence identity, the folding pathways for these two proteins appear to diverge as early as in the denatured state. Our results suggest a mechanism whereby protein topology is committed very early along the folding pathway, being imprinted in the residual structure of the denatured state.


Assuntos
Dobramento de Proteína , Proteínas/química , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Desnaturação Proteica , Engenharia de Proteínas
11.
Biochem Soc Trans ; 40(2): 429-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22435825

RESUMO

Current knowledge on the reaction whereby a protein acquires its native three-dimensional structure was obtained by and large through characterization of the folding mechanism of simple systems. Given the multiplicity of amino acid sequences and unique folds, it is not so easy, however, to draw general rules by comparing folding pathways of different proteins. In fact, quantitative comparison may be jeopardized not only because of the vast repertoire of sequences but also in view of a multiplicity of structures of the native and denatured states. We have tackled the problem of the relationships between the sequence information and the folding pathway of a protein, using a combination of kinetics, protein engineering and computational methods, applied to relatively simple systems. Our strategy has been to investigate the folding mechanism determinants using two complementary approaches, i.e. (i) the study of members of the same family characterized by a common fold, but substantial differences in amino acid sequence, or (ii) heteromorphic pairs characterized by largely identical sequences but with different folds. We discuss some recent data on protein-folding mechanisms by presenting experiments on different members of the PDZ domain family and their circularly permuted variants. Characterization of the energetics and structures of intermediates and TSs (transition states), obtained by Φ-value analysis and restrained MD (molecular dynamics) simulations, provides a glimpse of the malleability of the dynamic states and of the role of the topology of the native states and of the denatured states in dictating folding and misfolding pathways.


Assuntos
Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Humanos , Cinética , Termodinâmica
12.
Biophys J ; 101(8): 2053-60, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22004760

RESUMO

The folding pathway of the small α/ß protein GB1 has been extensively studied during the past two decades using both theoretical and experimental approaches. These studies provided a consensus view that the protein folds in a two-state manner. Here, we reassessed the folding of GB1, both by experiments and simulations, and detected the presence of an on-pathway intermediate. This intermediate has eluded earlier experimental characterization and is distinct from the collapsed state previously identified using ultrarapid mixing. Failure to identify the presence of an intermediate affects some of the conclusions that have been drawn for GB1, a popular model for protein folding studies.


Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
13.
Proc Natl Acad Sci U S A ; 105(49): 19241-6, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19033470

RESUMO

The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Phi value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.


Assuntos
Modelos Químicos , Proteínas do Tecido Nervoso/química , Domínios PDZ , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Simulação por Computador , Mutagênese , Proteínas do Tecido Nervoso/genética , Dobramento de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética , Termodinâmica
14.
Proteins ; 78(10): 2213-21, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20544959

RESUMO

The cytochrome c maturation process is carried out in the bacterial periplasm, where some specialized thiol-disulfide oxidoreductases work in close synergy for the correct reduction of oxidized apocytochrome before covalent heme attachment. We present a structural and functional characterization of the soluble periplasmic domain of CcmG from the opportunistic pathogen P. aeruginosa (Pa-CcmG), a component of the protein machinery involved in cyt c maturation in gram-negative bacteria. X-ray crystallography reveals that Pa-CcmG is a TRX-like protein; high-resolution crystal structures show that the oxidized and the reduced forms of the enzyme are identical except for the active-site disulfide. The standard redox potential was calculated to be E(0') = -0.213 V at pH 7.0; the pK(a) of the active site thiols were pK(a) = 6.13 +/- 0.05 for the N-terminal Cys74 and pK(a) = 10.5 +/- 0.17 for the C-terminal Cys77. Experiments were carried out to characterize and isolate the mixed disulfide complex between Pa-CcmG and Pa-CcmH (the other redox active component of System I in P. aeruginosa). Our data indicate that the target disulfide of this TRX-like protein is not the intramolecular disulfide of oxidized Pa-CcmH, but the intermolecular disulfide formed between Cys28 of Pa-CcmH and DTNB used for the in vitro experiments. This observation suggests that, in vivo, the physiological substrate of Pa-CcmG may be the mixed-disulfide complex between Pa-CcmH and apo-cyt.


Assuntos
Proteínas de Bactérias/química , Citocromos c/biossíntese , Proteínas de Membrana/química , Proteína Dissulfeto Redutase (Glutationa)/química , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/genética , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Tiorredoxinas/química
15.
Sci Rep ; 10(1): 11276, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647254

RESUMO

Lipopolysaccharide (LPS) is a critical component of the outer membrane (OM) of many Gram-negative bacteria. LPS is translocated to the OM by the LPS transport (Lpt) system. In the human pathogen Pseudomonas aeruginosa, the periplasmic Lpt component, LptH, is essential for LPS transport, planktonic and biofilm growth, OM stability and infectivity. LptH has been proposed to oligomerize and form a protein bridge that accommodates LPS during transport. Based on the known LptH crystal structure, here we predicted by in silico modeling five different sites likely involved in LptH oligomerization. The relevance of these sites for LptH activity was verified through plasmid-mediated expression of site-specific mutant proteins in a P. aeruginosa lptH conditional mutant. Complementation and protein expression analyses provided evidence that all mutated sites are important for LptH activity in vivo. It was observed that the lptH conditional mutant overcomes the lethality of nonfunctional lptH variants through RecA-mediated homologous recombination between the wild-type lptH gene in the genome and mutated copies in the plasmid. Finally, biochemical assays on purified recombinant proteins showed that some LptH variants are indeed specifically impaired in oligomerization, while others appear to have defects in protein folding and/or stability.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Citoplasma/metabolismo , Análise Mutacional de DNA , Escherichia coli/metabolismo , Teste de Complementação Genética , Genoma Bacteriano , Mutação , Periplasma/metabolismo , Plasmídeos/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/metabolismo
16.
Biophys J ; 96(6): 2289-98, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19289055

RESUMO

Amyloid fibril formation is a distinctive hallmark of a number of degenerative diseases. In this process, protein monomers self-assemble to form insoluble structures that are generally referred to as amyloid fibrils. We have induced in vitro amyloid fibril formation of a PDZ domain by combining mechanical agitation and high ionic strength under conditions otherwise close to physiological (pH 7.0, 37 degrees C, no added denaturants). The resulting aggregates enhance the fluorescence of the thioflavin T dye via a sigmoidal kinetic profile. Both infrared spectroscopy and circular dichroism spectroscopy detect the formation of a largely intermolecular beta-sheet structure. Atomic force microscopy shows straight, rod-like fibrils that are similar in appearance and height to mature amyloid-like fibrils. Under these conditions, before aggregation, the protein domain adopts an essentially native-like structure and an even higher conformational stability (DeltaG(U-F)(H2O)). These results show a new method for converting initially folded proteins into amyloid-like aggregates. The methodological approach used here does not require denaturing conditions; rather, it couples agitation with a high ionic strength. Such an approach offers new opportunities to investigate protein aggregation under conditions in which a globular protein is initially folded, and to elucidate the physical forces that promote amyloid fibril formation.


Assuntos
Amiloide/química , Domínios PDZ , Dobramento de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 13/química , Naftalenossulfonato de Anilina , Animais , Benzotiazóis , Dicroísmo Circular , Fluorescência , Cinética , Camundongos , Microscopia de Força Atômica , Modelos Moleculares , Movimento (Física) , Concentração Osmolar , Estrutura Secundária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 13/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Tiazóis
17.
J Am Chem Soc ; 131(33): 11727-33, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19722594

RESUMO

To understand the role of sequence connectivity in protein folding pathways, we explored by Phi-value analysis the folding pathway of an engineered circularly permuted PDZ domain. This variant has the same sequence connectivity as naturally occurring circularly permuted PDZ domains and displays a symmetrical distribution of secondary structure elements (i.e., beta beta alpha beta beta alpha beta beta) while maintaining the same tertiary interactions of the well-characterized second PDZ domain from PTP-BL (PDZ2). Reliable Phi values were obtained for both a low-energy intermediate and the late rate-limiting transition state, allowing a description of both early and late events in folding. A comparison with Phi values obtained for wild-type PDZ2 reveals that while the structure of the late transition state is robust and unaffected by circular permutation, the folding intermediate is stabilized by a different nucleus involving residues located at the new N- and C-termini. The results suggest that folding is driven by competing nuclei whose stabilities may be selectively tuned by circular permutation.


Assuntos
Engenharia de Proteínas/métodos , Dobramento de Proteína , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Domínios PDZ , Desnaturação Proteica , Estrutura Secundária de Proteína
18.
Trends Biochem Sci ; 29(10): 535-41, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15450608

RESUMO

Of the globular proteins, cytochrome c (cyt c) has been used extensively as a model system for folding studies. Here we analyse the folding pathway of different cyt c proteins from prokaryotes and eukaryotes, and attempt to single out general correlations between structural determinants and folding mechanisms. Recent studies provide evidence that the folding pathway of several cyt c proteins involves the formation of a partially structured intermediate. Using state-of-the-art kinetic analysis on published data, we show that such a folding intermediate is an obligatory on-pathway species that might represent either a defined local minimum in the reaction coordinate or an unstable high-energy state. Available data also indicate that some essential structural features of the folding intermediate and transition states are highly conserved across this protein family. Thus, cyt c proteins share a consensus folding mechanism in spite of large differences in physico-chemical properties and thermodynamic stability. This novel outlook on the folding of cyt c can shed light on much published data and might offer a general scheme by which to plan new experiments.


Assuntos
Grupo dos Citocromos c/química , Dobramento de Proteína , Fenômenos Químicos , Físico-Química , Células Eucarióticas/química , Guanidina/química , Cinética , Modelos Moleculares , Células Procarióticas/química , Conformação Proteica , Desnaturação Proteica , Termodinâmica
19.
FEBS J ; 286(21): 4245-4260, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199072

RESUMO

The Small Ribosomal Subunit Biogenesis GTPase A (RsgA) is a bacterial assembly factor involved in the late stages of the 30S subunit maturation. It is a multidomain GTPase in which the central circularly permutated GTPase domain is flanked by an OB domain and a Zn-binding domain. All three domains participate in the interaction with the 30S particle thus ensuring an efficient coupling between catalytic activity and biological function. In vivo studies suggested the relevance of rsgA in bacterial growth and cellular viability, but other pleiotropic roles of RsgA are also emerging. Here, we report the 3D structure of RsgA from Pseudomonas aeruginosa (PaRsgA) in the GDP-bound form. We also report a biophysical and biochemical characterization of the protein in both the GDP-bound and its nucleotide-free form. In particular, we report a kinetic analysis of the RsgA binding to GTP and GDP. We found that PaRsgA is able to bind both nucleotides with submicromolar affinity. The higher affinity towards GDP (KD  = 0.011 µm) with respect to GTP (KD  = 0.16 µm) is mainly ascribed to a smaller GDP dissociation rate. Our results confirm that PaRsgA, like most other GTPases, has a weak intrinsic enzymatic activity (kCAT  = 0.058 min-1 ). Finally, the biological role of RsgA in P. aeruginosa was investigated, allowing us to conclude that rsgA is dispensable for P. aeruginosa growth but important for drug resistance and virulence in an animal infection model. DATABASES: Coordinates and structure factors for the protein structure described in this manuscript have been deposited in the Protein Data Bank (https://www.rcsb.org) with the accession code 6H4D.


Assuntos
Farmacorresistência Bacteriana/genética , GTP Fosfo-Hidrolases/ultraestrutura , Pseudomonas aeruginosa/metabolismo , Subunidades Ribossômicas Menores/genética , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Sítios de Ligação , Escherichia coli/genética , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Guanosina Difosfato/química , Cinética , Conformação Molecular , Ligação Proteica/genética , Conformação Proteica , Pseudomonas aeruginosa/enzimologia , Subunidades Ribossômicas Menores/metabolismo , Subunidades Ribossômicas Menores/ultraestrutura
20.
FEBS Lett ; 582(6): 1003-7, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18307988

RESUMO

It is generally accepted that in the c-type cytochromes the covalently bound heme plays a primary role in the acquisition of the folded state. Here, we show that a stabilized site-directed variant of apo-cyt c551 from Pseudomonas aeruginosa (Pa-apocyt F7A/W77F) retains native-like features in the presence of sodium sulfate even in the absence of heme. By time-resolved intrinsic fluorescence, we have evidence that Pa-apocyt F7A/W77F may acquire a compact, native-like conformation within microseconds. These results challenge current thinking about the role of the heme group in the folding of c-type cytochromes.


Assuntos
Proteínas de Bactérias/química , Citocromos c/química , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Citocromos c/genética , Estabilidade Enzimática/genética , Heme/química , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA