Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomicrofluidics ; 8(4): 046501, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25379106

RESUMO

Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm(2) and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries.

2.
Arch Biochem Biophys ; 408(1): 137-43, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12485612

RESUMO

Structural studies of N(10)-formyltetrahydrofolate synthetase (FTHFS) have indicated the involvement of Arg 97 in the binding of the formyl phosphate intermediate. Two site-directed mutants were constructed to test this hypothesis: R97S (Ser substitution) and R97E (Glu substitution). The k(cat) of R97S was approximately 60% that of the wild-type enzyme and had K(m) for ATP and formate twofold higher than those of wild type. R97E was completely inactive and had a K(m) for ATP nearly six times that of wild type. Substrate inhibition by tetrahydrofolate was shown to occur in wild-type and R97S enzymes using both steady-state and transient-state kinetic approaches. These results lend greater insight into the mechanistic function of FTHFS by confirming the interaction of both ATP and formate with Arg 97 and introducing the aspect of substrate inhibition by tetrahydrofolate with regard to substrate binding and dissociation.


Assuntos
Formiato-Tetra-Hidrofolato Ligase/química , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Compostos Organofosforados/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bactérias Anaeróbias/enzimologia , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Formiatos/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tetra-Hidrofolatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA