Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(2): 990-996, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30620205

RESUMO

Contactless time-resolved optical pump-probe and external quantum efficiency measurements were performed in epitaxially grown free-standing wurtzite indium arsenide/indium aluminum arsenide (InAs-InAlAs) core-shell nanowires on Si (111) substrate from 77 to 293 K. The first independent investigation of Shockley-Read-Hall, radiative, and Auger recombination in InAs-based NWs is presented. Although the Shockley-Read-Hall recombination coefficient was found to be at least 2 orders of magnitude larger than the average experimental values of other reported InAs materials, the Auger recombination coefficient was reported to be 10-fold smaller. The very low Auger and high radiative rates result in an estimated peak internal quantum efficiency of the core-shell nanowires as high as 22% at 77 K, making these nanowires of potential interest for high-efficiency mid-infrared emitters. A greater than 2-fold enhancement in minority carrier lifetime was observed from capping nanowires with a thin InAlAs shell due to the passivation of surface defects.

2.
Nano Lett ; 18(2): 811-819, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29345956

RESUMO

III-As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 21̅1̅0 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largely unaffected, leaving the band structure unperturbed. Diffraction patterns from the 011̅0 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.

3.
Nano Lett ; 16(8): 5135-42, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458736

RESUMO

Surface effects strongly dominate the intrinsic properties of semiconductor nanowires (NWs), an observation that is commonly attributed to the presence of surface states and their modification of the electronic band structure. Although the effects of the exposed, bare NW surface have been widely studied with respect to charge carrier transport and optical properties, the underlying electronic band structure, Fermi level pinning, and surface band bending profiles are not well explored. Here, we directly and quantitatively assess the Fermi level pinning at the surfaces of composition-tunable, intrinsically n-type InGaAs NWs, as one of the prominent, technologically most relevant NW systems, by using correlated photoluminescence (PL) and X-ray photoemission spectroscopy (XPS). From the PL spectral response, we reveal two dominant radiative recombination pathways, that is, direct near-band edge transitions and red-shifted, spatially indirect transitions induced by surface band bending. The separation of their relative transition energies changes with alloy composition by up to more than ∼40 meV and represent a direct measure for the amount of surface band bending. We further extract quantitatively the Fermi level to surface valence band maximum separation using XPS, and directly verify a composition-dependent transition from downward to upward band bending (surface electron accumulation to depletion) with increasing Ga-content x(Ga) at a crossover near x(Ga) ∼ 0.2. Core level spectra further demonstrate the nature of extrinsic surface states being caused by In-rich suboxides arising from the native oxide layer at the InGaAs NW surface.

4.
Nano Lett ; 15(5): 3533-40, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25922974

RESUMO

Core-shell nanowires (NW) have become very prominent systems for band engineered NW heterostructures that effectively suppress detrimental surface states and improve performance of related devices. This concept is particularly attractive for material systems with high intrinsic surface state densities, such as the low-bandgap In-containing group-III arsenides, however selection of inappropriate, lattice-mismatched shell materials have frequently caused undesired strain accumulation, defect formation, and modifications of the electronic band structure. Here, we demonstrate the realization of closely lattice-matched radial InGaAs-InAlAs core-shell NWs tunable over large compositional ranges [x(Ga)∼y(Al) = 0.2-0.65] via completely catalyst-free selective-area molecular beam epitaxy. On the basis of high-resolution X-ray reciprocal space maps the strain in the NW core is found to be insignificant (ε < 0.1%), which is further reflected by the absence of strain-induced spectral shifts in luminescence spectra and nearly unmodified band structure. Remarkably, the lattice-matched InAlAs shell strongly enhances the optical efficiency by up to 2 orders of magnitude, where the efficiency enhancement scales directly with increasing band offset as both Ga- and Al-contents increase. Ultimately, we fabricated vertical InGaAs-InAlAs NW/Si photovoltaic cells and show that the enhanced internal quantum efficiency is directly translated to an energy conversion efficiency that is ∼3-4 times larger as compared to an unpassivated cell. These results highlight the promising performance of lattice-matched III-V core-shell NW heterostructures with significant impact on future development of related nanophotonic and electronic devices.

5.
Nano Lett ; 14(3): 1508-14, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24502812

RESUMO

The unique features of nanowires (NW), such as the high aspect ratio and extensive surface area, are expected to play a key role in the development of very efficient semiconductor surface emitters in the terahertz (THz) spectral range. Here, we report on optically excited THz emission from catalyst-free grown arrays of intrinsically n-type InAs NWs using THz time-domain spectroscopy. Depending on the aspect ratio, the THz emission efficiency of the n-type InAs NWs is found to be up to ∼3 times stronger than that of bulk p-type InAs, known as currently the most efficient semiconductor-based THz surface emitter. Characteristic differences from bulk p-type InAs are particularly revealed from excitation wavelength-dependent measurements, showing monotonously increasing THz pulse amplitude in the NW arrays with increasing photon energy. Further polarization-dependent and two-color pump-probe experiments elucidate the physical mechanism of the THz emission: In contrast to bulk p-type InAs, where the anisotropic photoconductivity in the surface electric field is the dominant cause for THz pulse generation, the origin of the intrinsic THz emission in the NWs is based on the photo-Dember effect. The strong THz emission from high aspect ratio NW arrays further suggests an improved out-coupling of the radiation, while further enhancements in efficiency using core-shell NW geometries are discussed.

6.
Nano Lett ; 13(12): 6070-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274597

RESUMO

Utilizing narrow band gap nanowire (NW) materials to extend nanophotonic applications to the mid-infrared spectral region (>2-3 µm) is highly attractive, however, progress has been seriously hampered due to their poor radiative efficiencies arising from nonradiative surface and Auger recombination. Here, we demonstrate up to ~ 10(2) times enhancements of the emission intensities from InAs NWs by growing an InAsP shell to produce core-shell NWs. By systematically varying the thickness and phosphorus (P)-content of the InAsP shell, we demonstrate the ability to further tune the emission energy via large strain-induced peak shifts that already exceed >100 meV at comparatively low fractional P-contents. Increasing the P-content is found to give rise to additional line width broadening due to asymmetric shell growth generated by a unique transition from {110}- to {112}-sidewall growth as confirmed by cross-sectional scanning transmission electron microscopy. The results also elucidate the detrimental effects of plastic strain relaxation on the emission characteristics, particularly in core-shell structures with very high P-content and shell thickness. Overall, our findings highlight that enhanced mid-infrared emission efficiencies with effective carrier confinement and suppression of nonradiative recombination are highly sensitive to the quality of the InAs-InAsP core-shell interface.


Assuntos
Arsenicais/química , Índio/química , Nanofios/química , Silício/química , Luminescência , Nanoconchas/química , Nanoestruturas/química , Propriedades de Superfície
7.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35564170

RESUMO

Mesoscopic superconductivity deals with various quasiparticle excitation modes, only one of them-the charge-mode-being directly accessible for conductance measurements due to the imbalance in populations of quasi-electron and quasihole excitation branches. Other modes carrying heat or even spin, valley etc. currents populate the branches equally and are charge-neutral, which makes them much harder to control. This noticeable gap in the experimental studies of mesoscopic non-equilibrium superconductivity can be filled by going beyond the conventional DC transport measurements and exploiting spontaneous current fluctuations. Here, we perform such an experiment and investigate the transport of heat in an open hybrid device based on a superconductor proximitized InAs nanowire. Using shot noise measurements, we investigate sub-gap Andreev heat guiding along the superconducting interface and fully characterize it in terms of the thermal conductance on the order of Gth∼e2/h, tunable by a back gate voltage. Understanding of the heat-mode also uncovers its implicit signatures in the non-local charge transport. Our experiments open a direct pathway to probe generic charge-neutral excitations in superconducting hybrids.

8.
ACS Nano ; 12(2): 1603-1610, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29385327

RESUMO

Direct correlations between dopant incorporation, distribution, and their electrical activity in semiconductor nanowires (NW) are difficult to access and require a combination of advanced nanometrology methods. Here, we present a comprehensive investigation of the chemical and electrically active dopant concentrations in n-type Si-doped InAs NW grown by catalyst-free molecular beam epitaxy using various complementary techniques. N-type carrier concentrations are determined by Seebeck effect measurements and four-terminal NW field-effect transistor characterization and compared with the Si dopant distribution analyzed by local electrode atom probe tomography. With increased dopant supply, a distinct saturation of the free carrier concentration is observed in the mid-1018 cm-3 range. This behavior coincides with the incorporated Si dopant concentrations in the bulk part of the NW, suggesting the absence of compensation effects. Importantly, excess Si dopants with very high concentrations (>1020 cm-3) segregate at the NW sidewall surfaces, which confirms recent first-principles calculations and results in modifications of the surface electronic properties that are sensitively probed by field-effect measurements. These findings are expected to be relevant also for doping studies of other noncatalytic III-V NW systems.

9.
ACS Nano ; 9(10): 9849-58, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26348461

RESUMO

We investigate the optoelectronic properties of single indium arsenide nanowires, which are grown vertically on p-doped silicon substrates. We apply a scanning photocurrent microscopy to study the optoelectronic properties of the single heterojunctions. The measured photocurrent characteristics are consistent with an excess charge carrier transport through midgap trap states, which form at the Si/InAs heterojunctions. Namely, the trap states add an additional transport path across a heterojunction, and the charge of the defects changes the band bending at the junction. The bending gives rise to a photovoltaic effect at a small bias voltage. In addition, we observe a photoconductance effect within the InAs nanowires at large biases.

10.
Nat Commun ; 4: 2931, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24304714

RESUMO

Semiconductor nanowires are widely considered to be the next frontier in the drive towards ultra-small, highly efficient coherent light sources. While NW lasers in the visible and ultraviolet have been widely demonstrated, the major role of surface and Auger recombination has hindered their development in the near infrared. Here we report infrared lasing up to room temperature from individual core-shell GaAs-AlGaAs nanowires. When subject to pulsed optical excitation, NWs exhibit lasing, characterized by single-mode emission at 10 K with a linewidth <60 GHz. The major role of non-radiative surface recombination is obviated by the presence of an AlGaAs shell around the GaAs-active region. Remarkably low threshold pump power densities down to ~760 W cm(-2) are observed at 10 K, with a characteristic temperature of T(0)=109±12 K and lasing operation up to room temperature. Our results show that, by carefully designing the materials composition profile, high-performance infrared NW lasers can be realised using III/V semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA