Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(21): 4979-5008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34875930

RESUMO

Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.


Assuntos
Alga Marinha , Antioxidantes/farmacologia , Carboidratos , Proteínas , Preparações Farmacêuticas
2.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630272

RESUMO

Food supplementation formulations refer to products that are designed to provide additional nutrients to the diet. Vitamins, dietary fibers, minerals and other functional compounds (such as antioxidants) are concentrated in dietary supplements. Specific amounts of dietary compounds are given to the body through food supplements, and these include as well so-called non-essential compounds such as secondary plant bioactive components or microbial natural products in addition to nutrients in the narrower sense. A significant social challenge represents how to moderately use the natural resources in light of the growing world population. In terms of economic production of (especially natural) bioactive molecules, ways of white biotechnology production with various microorganisms have recently been intensively explored. In the current review other relevant dietary supplements and natural substances (e.g., vitamins, amino acids, antioxidants) used in production of dietary supplements formulations and their microbial natural production via fermentative biotechnological approaches are briefly reviewed. Biotechnology plays a crucial role in optimizing fermentation conditions to maximize the yield and quality of the target compounds. Advantages of microbial production include the ability to use renewable feedstocks, high production yields, and the potential for cost-effective large-scale production. Additionally, it can be more environmentally friendly compared to chemical synthesis, as it reduces the reliance on petrochemicals and minimizes waste generation. Educating consumers about the benefits, safety, and production methods of microbial products in general is crucial. Providing clear and accurate information about the science behind microbial production can help address any concerns or misconceptions consumers may have.


Assuntos
Antioxidantes , Vitaminas , Fermentação , Suplementos Nutricionais , Vitamina A , Vitamina K
3.
Int J Mol Sci ; 23(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563103

RESUMO

Obesity and colorectal cancer (CRC) are among the leading diseases causing deaths in the world, showing a complex multifactorial pathology. Obesity is considered a risk factor in CRC development through inflammation, metabolic, and signaling processes. Leptin is one of the most important adipokines related to obesity and an important proinflammatory marker, mainly expressed in adipose tissue, with many genetic variation profiles, many related influencing factors, and various functions that have been ascribed but not yet fully understood and elucidated, the most important ones being related to energy metabolism, as well as endocrine and immune systems. Aberrant signaling and genetic variations of leptin are correlated with obesity and CRC, with the genetic causality showing both inherited and acquired events, in addition to lifestyle and environmental risk factors; these might also be related to specific pathogenic pathways at different time points. Moreover, mutation gain is a crucial factor enabling the genetic process of CRC. Currently, the inconsistent and insufficient data related to leptin's relationship with obesity and CRC indicate the necessity of further related studies. This review summarizes the current knowledge on leptin genetics and its potential relationship with the main pathogenic pathways of obesity and CRC, in an attempt to understand the molecular mechanisms of these associations, in the context of inconsistent and contradictory data. The understanding of these mechanisms linking obesity and CRC could help to develop novel therapeutic targets and prevention strategies, resulting in a better prognosis and management of these diseases.


Assuntos
Neoplasias Colorretais , Leptina , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Leptina/genética , Leptina/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Receptores para Leptina/metabolismo
4.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807277

RESUMO

The deactivation of degrading and pectinolytic enzymes is crucial in the fruit juice industry. In commercial fruit juice production, a variety of approaches are applied to inactivate degradative enzymes. One of the most extensively utilized traditional procedures for improving the general acceptability of juice is thermal heat treatment. The utilization of a non-thermal pulsed electric field (PEF) as a promising technology for retaining the fresh-like qualities of juice by efficiently inactivating enzymes and bacteria will be discussed in this review. Induced structural alteration provides for energy savings, reduced raw material waste, and the development of new products. PEF alters the α-helix conformation and changes the active site of enzymes. Furthermore, PEF-treated juices restore enzymatic activity during storage due to either partial enzyme inactivation or the presence of PEF-resistant isozymes. The increase in activity sites caused by structural changes causes the enzymes to be hyperactivated. PEF pretreatments or their combination with other nonthermal techniques improve enzyme activation. For endogenous enzyme inactivation, a clean-label hurdle technology based on PEF and mild temperature could be utilized instead of harsh heat treatments. Furthermore, by substituting or combining conventional pasteurization with PEF technology for improved preservation of both fruit and vegetable juices, PEF technology has enormous economic potential. PEF treatment has advantages not only in terms of product quality but also in terms of manufacturing. Extending the shelf life simplifies production planning and broadens the product range significantly. Supermarkets can be served from the warehouse by increasing storage stability. As storage stability improves, set-up and cleaning durations decrease, and flexibility increases, with only minor product adjustments required throughout the manufacturing process.


Assuntos
Manipulação de Alimentos , Sucos de Frutas e Vegetais , Eletricidade , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Frutas/microbiologia , Pasteurização/métodos , Tecnologia
5.
Compr Rev Food Sci Food Saf ; 21(2): 1958-1978, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35080794

RESUMO

According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.


Assuntos
Gases em Plasma , Verduras , Antioxidantes , Parede Celular , Frutas , Gases em Plasma/farmacologia
6.
Cell Physiol Biochem ; 54(4): 648-664, 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32619350

RESUMO

BACKGROUND/AIMS: Triple negative breast cancer (TNBC) is a highly aggressive form of cancer which lacks targeted therapy options. Thus, TNBC patients have poor outcomes and a decreased survival rate than patients with other types of breast cancers. Due to the lack of surface receptors, TNBC needs a comprehensive investigation to provide more information regarding patient's therapy, as well as to understand the way how to counteract drug resistance mechanisms. Nowadays, chemotherapy remains an unsolved issue which rise a lot of questions in oncology field. METHODS: In this article, we investigated the implication of paclitaxel in TNBC cell lines after a prolong administration, after 12, respectively 24 passages followed by evaluation of morphological alteration, mutational pattern by next generation sequencing and the altered gene expression pattern by microarray technology and validation by qRT-PCR of the resistance to therapy relevant genes. RESULTS: Using functional assays, we showed that paclitaxel exhibits antiproliferative activity on Hs578T/Pax and MDA-MB-231/Pax demonstrating the activation of cell death mechanisms. Confocal microscopy revealed significant modifications which occur in the morphological structure with a disruption of the actin-filaments and also mitotic catastrophe. The presence of these nuclear alterations is due to some modifications at the cellular and molecular levels. Important alterations at the transcriptomic and genomic levels were observed from this a common drug resistance signature (IL-6, CXCL8, VEGFA, EGR1, PTGS2 and TRIB1) for both cell lines at 24 passages was discovered. Also, an important mutation (TP53) linked with drug response was identified. CONCLUSION: These results might be used to furnish novel biomarkers in TNBC, as well as to find a strategy to counteract the resistance to therapy in order to increase survival rate and to enhance the prognosis of patients with TNBC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Morte Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Supressora de Tumor p53/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Genômica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Microb Cell Fact ; 17(1): 97, 2018 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-29908562

RESUMO

The goal of this research is the investigation of a way to maximize the production of docosahexaenoic acid (DHA) and ß-carotene by optimizing the culture conditions of their sources, microalgae Schizochytrium limacinum and fungus Blakeslea trispora respectively, in a fermentation medium. The influencing factors in the fermentation process for producing DHA and ß-carotene have proven to be: the concentration of carbon source (different glycerol crude and pure concentrations) for both of them, and in particular temperature for DHA and pH for ß-carotene. Testing the effect of these parameters was determined: biomass, DHA and ß-carotene concentration. The highest production by S. limacinum was obtained at 25 °C, while using a quantity of 90 g/L of glycerol (crude or pure) as a carbon source. Temperature was the main factor that influenced the biosynthesis of DHA. The quantification of DHA was made by GC-MS chromatography, followed by a purification process, with the end result of DHA in pure phase. The maximum quantities for ß-carotene production were obtained with pH 7 and 60 g/L of crude glycerol. The results highlight the possibility of using crude glycerol as a low-cost substrates for growth of microalgae S. limacinum and of fungus B. trispora in order to obtain the crucial molecules: docosahexaenoic acid and ß-carotene.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Glicerol/química , Microalgas/crescimento & desenvolvimento , Fermentação , Microalgas/metabolismo , beta Caroteno
8.
Microb Cell Fact ; 16(1): 190, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110678

RESUMO

Today, biofuels represent a hot topic in the context of petroleum and adjacent products decrease. As biofuels production increase, so does the production of their major byproduct, namely crude glycerol. The efficient usage of raw glycerol will concur to the biodiesel viability. As an inevitable waste of biodiesel manufacturing, glycerol is potentially an attractive substrate for the production of value-added products by fermentation processes, due to its large amounts, low cost and high degree of reduction. One of the most important usages of glycerol is its bioconversion through microbial fermentation to value-added materials like 1,3-propanediol and citric acid. There is a considerable industrial interest in 1,3-propanediol and citric acid production based on microbial fermentations, as it seems to be in competition with traditional technologies utilized for these products. In the present work, yields and concentrations of 1,3-propanediol and citric acid registered for different isolated strains are also described. Microbial bioconversion of glycerol represents a remarkable choice to add value to the biofuel production chain, allowing the biofuel industry to be more competitive. The current review presents certain ways for the bioconversion of crude glycerol into citric acid and 1,3-propanediol with high yields and concentrations achieved by using isolated microorganisms.


Assuntos
Biocombustíveis , Ácido Cítrico/metabolismo , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Bactérias/metabolismo , Biotecnologia , Fermentação , Glicerol/química , Microbiologia Industrial/métodos , Propilenoglicóis/análise
9.
Int J Biol Macromol ; 261(Pt 1): 129576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253140

RESUMO

There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.


Assuntos
Resíduos Industriais , Proteínas de Plantas , Alimentos , Agricultura
10.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231896

RESUMO

Smart polymeric films and coatings represent a significant step forward in packaging technology [...].

11.
Polymers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447427

RESUMO

In this study, chitosan (Chi) was used to microencapsulate peppermint essential oil (PEO). A novel gelatin-based cryogel loaded with PEO microcapsules was further developed and characterized for potential applications. Four different cryogel systems were designed, and the morphological, molecular, physical and antibacterial properties were investigated. Additionally, the antimicrobial properties of PEO, alone and microcapsulated, incorporated into the cryogel network were evaluated. The observed gel structure of cryogels exhibited a highly porous morphology in the microcapsules. The highest values of the equilibrium swelling ratio were acquired for the GelCryo-ChiCap and GelCryo-PEO@ChiCap samples. The contact angle GelCryo-PEO@ChiCap sample was lower than the control (GelCryo) due to the water repelling of the essential oil. It has been found that the incorporation of encapsulated PEO into the cryogels would be more advantageous compared to its direct addition. Moreover, GelCryo-PEO@ChiCap cryogels showed the strongest antibacterial activities, especially against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria). The system that was developed showed promising results, indicating an improved antibacterial efficacy and enhanced structural properties due to the presence of microcapsules. These findings suggest that the system may be an appropriate candidate for various applications, including, but not limited to, drug release, tissue engineering, and food packaging. Finally, this system demonstrates a strategy to stabilize the releasing of the volatile compounds for creating successful results.

12.
Gels ; 9(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998994

RESUMO

Taro rhizomes are a rich source of polysaccharides, including starch and mucilage. However, mucilage has excellent anti-microbial efficacy, and unique gel-forming and techno-functional properties. Therefore, this study aimed to extract and utilize taro mucilage (TM), which is viscous and has a gel-like texture, for the shelf-life enhancement of fresh-cut brinjals (eggplants). Mucilage was extracted using hot-water extraction and the yield was calculated to be 6.25 ± 0.87% on a dry basis. Different formulations of coating gel solutions were prepared: 1, 2, 3, 4, 5, 6, and 7%. The selection of the coating gel solution was carried out based on particle size. The smallest particle size was observed in treatment T5 (154 ± 0.81 nm) and zeta potential -27.22 ± 0.75 mV. Furthermore, cut brinjals were coated with the prepared mucilage gel solution and this showed a significant effect on the overall physicochemical properties of cut brinjals. Maximum weight loss occurred on the 10th day (12.67 ± 0.24%), as compared with coated brinjals (8.99 ± 0.42%). Minor changes were observed in pH, for the control sample significantly decreased from 4.58 ± 0.45 to 2.99 ± 0.75 on the 0th day to the 10th day, respectively. Titrable acidity of coated and uncoated cut brinjals was found to be at 0.31 ± 0.44% on the 0th day, which increased up to 0.66 ± 0.20% for the control and 0.55 ± 0.68% for coated brinjals on the 10th day. The taro mucilage coating gel (TMCG) solution showed pseudo-plastic behavior or shear-thinning fluid behavior. FTIR data confirmed the existence of several functional groups including various sugars, proteins, and hydroxylic groups. Antioxidant activity of coated and uncoated cut brinjals was found to be 22.33 ± 0.37% and 22.15 ± 0.49%, respectively. The TMCG solution showed effective results towards the various food pathogenic microorganisms. Overall, it is a natural, renewable resource that is biodegradable. This makes it an environmentally friendly alternative to synthetic additives or thickeners. It is cost effective, easily available, eco-friendly, and non-toxic. This can be an attractive feature for consumers looking for sustainable and eco-friendly options.

13.
Food Chem X ; 17: 100565, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845471

RESUMO

Bitter gourds were dried under varied drying conditions in a microwave assisted fluidized bed dryer, and the process was optimized using response surface methodology. Microwave power, temperature and air velocity were used as process variables for drying and the process parameters were varied between 360 and 720 W, 40-60 °C and 10-14 m/s, respectively. The responses determined for deciding the optimal criteria were vitamin C, total phenolics, IC50, total chlorophyll content, vitamin A content, rehydration ratio, hardness and total color change of the dried bitter gourd. Statistical analyses were done by using response surface methodology, which showed that independent variables affected the responses to a varied extent. The optimum drying conditions of 550.89 W microwave power, 55.87 °C temperature, and 13.52 m/s air velocity were established for microwave assisted fluidized bed drying to obtain highest desirability for the dried bitter gourd. At optimum conditions, validation experiment was done to ensure the suitability of models. Temperature and drying time plays an important role in the deterioration of bioactive components. Faster and shorter heating led to the greater retention of bioactive components. Taking the aforesaid results into consideration, our study recommended MAFBD as a promising technique with minimum changes in quality attributes of bitter gourd.

14.
Microorganisms ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630489

RESUMO

Cotton stalk, a waste product in agriculture, serves as a beneficial, low-cost material as a medium for microbial synthesis of lactic acid as desired for polylactic acid synthesis. Cotton stalk was used as a substrate for microbial lactic acid synthesis, and a novel strain of Lactococcus cremoris was reported to synthesize 51.4 g/L lactic acid using cellulose recovered from the cotton stalk. In total, 18 Lactobacillus isolates were isolated from kitchen waste, soil, sugarcane waste, and raw milk samples screened for maximum lactic acid production. It was found that one of the Lactococcus cremoris isolates was found to synthesize maximum lactic acid at a concentration of 51.4 g/L lactic acid in the hydrolysate prepared from cotton stalk. The upstream process parameters included 10% inoculum size, hydrolysate containing reducing sugars 74.23 g/L, temperature 37 °C, agitation 220 rpm, production age 24 h. Only the racemic (50:50) mixture of D-LA and L-LA (i.e., D/L-LA) is produced during the chemical synthesis of lactic acid, which is undesirable for the food, beverage, pharmaceutical, and biomedical industries because only the L-form is digestible and is not suitable for biopolymer, i.e., PLA-based industry where high optically purified lactic acid is required. Furthermore, polylactic acid was synthesized through direct polycondensation methods using various catalysts such as chitosan, YSZ, and Sb2O3. PLA is biocompatible and biodegradable in nature (its blends and biocomposites), supporting a low-carbon and circular bioeconomy.

15.
Polymers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215741

RESUMO

Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today's smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.

16.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631869

RESUMO

At present, people more actively pursuing biodegradable-based food packaging to lower the environmental problems of plastic-based packaging. Starch could become a promising alternative to plastic because of its properties (easily available, nontoxic, tasteless, biodegradable, ecofriendly, and edible). This review article is focused mainly on the impact of the properties of starch-based biodegradable films, such as their thickness, morphology, and optical, water-barrier, mechanical, oxygen-barrier, antioxidant, and antimicrobial properties, after the incorporation of additives, and how such films fulfill the demands of the manufacturing of biodegradable and edible food-based film with preferable performance. The incorporation of additives in starch-based films is largely explained by its functioning as a filler, as shown via a reduction in water and oxygen permeability, increased thickness, and better mechanical properties. Additives also showed antimicrobial and antioxidant properties in the films/coatings, which would positively impact the shelf life of coated or wrapped food material.

17.
Front Nutr ; 9: 872589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782925

RESUMO

Wheat has been considered one of the most important staple foods for thousands of years. It is one of the largest suppliers of calories in the daily diet, which is added to many different products. Wheat is also a good source of health-benefiting antioxidants. This study aims toinvestigate the changes in the antioxidant properties, such as total phenol content, 2,2-diphenyl-1-picrylhydrazyl (DPPH), metal chelating activity, 2,2'-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid) diammonium salt (ABTS+) scavenging activity, and color intensity, during the extrusion processing of six different wheat cultivars. The extrusion factors evaluated were 15% feed moisture and two extrusion temperatures (150 and 180°C). Extrusion processing increased antioxidant activity (DPPH, metal chelating activity, and ABTS+ scavenging activity), whereas total flavonoids content and total phenolic content were decreased. The L* values of wheat flours increased significantly (p < 0.05) after extrusion at 150 and 180°C, 15% mc. Furthermore, redness was decreased from control wheat cultivars (range: 0.17-0.21) to extrusion at 150°C (range: 0.14-0.17) and 180°C (range: 0.1-0.14). The study suggests that extruded wheat could improve the antioxidant potential in food products.

18.
Polymers (Basel) ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746054

RESUMO

Pearl millet starches were modified at pH 8.0 using 3.0% octenyl succinic anhydride (OSA), and their pasting, rheological properties, and in vitro digestibility were analyzed. The degree of substitution (D.C.) of OSA-modified starches varied from 0.010 to 0.025. The amylose content decreased after modification, while the reverse was observed for swelling power. After OSA modification, the pasting viscosities (peak, trough, setback (cP)) of the modified starches increased compared to their native counterparts. G' (storage modulus) and G″ (loss modulus) decreased significantly (p < 0.05) compared to their native counterparts during heating. Yield stress (σo), consistency (K), and flow behavior index (n) varied from 9.8 to 87.2 Pa, 30.4 to 91.0 Pa.s., and 0.25 to 0.47, respectively. For starch pastes, steady shear properties showed n < 1, indicating shear-thinning and pseudoplastic behavior. The readily digestible starch (RDS) and slowly digestible starch (SDS) contents decreased, while the resistant starch (R.S.) content increased. After OSA treatment, the solubility power of the starches increased; this property of OSA starches speeds up the biodegradability process for the films, and it helps to maintain a healthy environment.

19.
Polymers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160510

RESUMO

Nanoparticles (NPs) have acquired significance in technological breakthroughs due to their unique properties, such as size, shape, chemical composition, physiochemical stability, crystal structure, and larger surface area. There is a huge demand for packaging materials that can keep food fresher for extended periods of time. The incorporation of nanoscale fillers in the polymer matrix would assists in the alleviation of packaging material challenges while also improving functional qualities. Increased barrier properties, thermal properties like melting point and glass transition temperatures, and changed functionalities like surface wettability and hydrophobicity are all features of these polymers containing nanocomposites. Inorganic nanoparticles also have the potential to reduce the growth of bacteria within the packaging. By incorporating nano-sized components into biopolymer-based packaging materials, waste material generated during the packaging process may be reduced. The different inorganic nanoparticles such as titanium oxide, zinc oxide, copper oxide, silver, and gold are the most preferred inorganic nanoparticles used in food packaging. Food systems can benefit from using these packaging materials and improve physicochemical and functional properties. The compatibility of inorganic nanoparticles and their various forms with different polymers make them excellent components for package fortification. This review article describes the various aspects of developing and applying inorganic nanoparticles in food packaging. This study provides diverse uses of metals and metal oxides nanoparticles in food packaging films for the development of improved packaging films that can extend the shelf life of food products. These packaging solutions containing nanoparticles would effectively preserve, protect, and maintain the quality of the food material.

20.
Front Nutr ; 9: 1026890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276841

RESUMO

Hypercholesterolemia is one of the major causes of cardiovascular ailments. The study has been conducted on the hypothesis that hypercholesterolemia can be modulated by microencapsulated curcumin due to its enhanced bioavailability. In this context, curcumin obtained from fresh rhizomes of Curcuma longa by conventional (CSE) and supercritical fluid (SFE) extractions, has been successfully microencapsulated using a mixture of gelatin and maltodextrin. The microencapsulated curcumin CSE &SFE, has been added as supplemented diet and has been resulted in maximum plasma concentration of curcumin at 100 min as 529.31 ± 8.73 and 405.23 ± 7.12 µg/mL, respectively compared to non-encapsulated turmeric powder used as control. During the bio evaluation trial, turmeric powder (3%), microencapsulated curcuminCSE (1%) and microencapsulated curcuminSFE (0.5%) were provided to designate rat groups categorized by normal; N1, N2, and N3 and hypercholesterolemic; H1, H2, and H3 conditions, respectively. The incorporation of microencapsulated curcuminSFE in the supplemented diet caused a reduction in serum cholesterol, low density lipoprotein (LDL) and triglycerides, athrogenic index (AI) and cardiac risk ration (CRR) as 5.42 and 12.81%, 7.25 and 15.42%, 3.17 and 9.38%, 15.38 and 29.28%, and 10.98 19.38% in normo- and hypercholesterolemic rat groups. Additionally, high-density lipoprotein (HDL) and anti-atherogenic index (AAI) indicated a significant increase in all treated rat groups. Conclusively, the inclusion of turmeric and curcumin microencapsulates in the dietary module has been proven effective to alleviate hyperlipidemia. Therefore, the present study is proven that curcumin absorption via the gastrointestinal tract and its stability toward metabolization in the body increased via microencapsulation using maltodextrin and gelatin. Microencapsulated curcumin reaches the target site via oral administration because of sufficient gastrointestinal residence period and stability in the digestive tract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA