Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Med Virol ; 96(4): e29555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546037

RESUMO

In this study, we demonstrated the antiviral efficacy of hesperetin against multiple poxviruses, including buffalopox virus (BPXV), vaccinia virus (VACV), and lumpy skin disease virus (LSDV). The time-of-addition and virus step-specific assays indicated that hesperetin reduces the levels of viral DNA, mRNA, and proteins in the target cells. Further, by immunoprecipitation (IP) of the viral RNA from BPXV-infected Vero cells and a cell-free RNA-IP assay, we demonstrated that hesperetin-induced reduction in BPXV protein synthesis is also consistent with diminished interaction between eukaryotic translation initiation factor eIF4E and the 5' cap of viral mRNA. Molecular docking and MD simulation studies were also consistent with the binding of hesperetin to the cap-binding pocket of eIF4E, adopting a conformation similar to m7GTP binding. Furthermore, in a BPXV egg infection model, hesperetin was shown to suppress the development of pock lesions on the chorioallantoic membrane and associated mortality in the chicken embryos. Most importantly, long-term culture of BPXV in the presence of hesperetin did not induce the generation of drug-resistant viral mutants. In conclusion, we, for the first time, demonstrated the antiviral activity of hesperetin against multiple poxviruses, besides providing some insights into its potential mechanisms of action.


Assuntos
Fator de Iniciação 4E em Eucariotos , Hesperidina , Vaccinia virus , Animais , Bovinos , Chlorocebus aethiops , Embrião de Galinha , Células Vero , Simulação de Acoplamento Molecular , Vaccinia virus/genética , Antivirais/farmacologia , RNA Mensageiro , Replicação Viral
2.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975687

RESUMO

Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E signaling pathway. In order to provide insights into the evolution of drug resistance, we selected resistant mutants by long-term sequential passages (P; n = 60) in the presence of p38 inhibitor (SB239063). The P60-SB239063 virus exhibited significant resistance to SB239063 as compared to the P60-Control virus. To provide mechanistic insights on the acquisition of resistance by BPXV-P60-SB239063, we generated p38-α and p38-ϒ (isoforms of p38) knockout Vero cells by CRISPR/Cas9-mediated genome editing. It was demonstrated that unlike the wild type (WT) virus which is dependent on p38-α isoform, the resistant virus (BPXV-P60-SB239063) switches over to use p38-ϒ so as to efficiently replicate in the target cells. This is a rare evidence wherein a virus was shown to bypass the dependency on a critical cellular factor under selective pressure of a drug.


Assuntos
Antivirais , Vaccinia virus , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Farmacorresistência Viral/genética , Vaccinia virus/metabolismo , Células Vero , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Clin Microbiol Rev ; 33(3)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32404434

RESUMO

Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.


Assuntos
Sistemas CRISPR-Cas , Desenvolvimento de Medicamentos , Fatores Celulares Derivados do Hospedeiro/antagonistas & inibidores , RNA Interferente Pequeno , Replicação Viral/genética , Animais , Marcação de Genes , Fatores Celulares Derivados do Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Vírus/genética
4.
Emerg Infect Dis ; 27(6): 1745-1748, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34013856

RESUMO

We collected 10 Burkholderia mallei isolates from equids in 9 districts in India during glanders outbreaks in 2013-2016. Multilocus variable-number tandem-repeat analysis showed 7 outbreak area-related genotypes. The study highlights the utility of this analysis for epidemiologically tracing of specific B. mallei isolates during outbreaks.


Assuntos
Burkholderia mallei , Mormo , Animais , Burkholderia mallei/genética , Cavalos , Índia , Repetições Minissatélites , Tipagem Molecular
5.
Curr Microbiol ; 79(1): 31, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34921617

RESUMO

Glanders is a highly contagious and fatal infection of equids caused by the bacteria known as Burkholderia mallei. It is one of the notifiable equine diseases and is still present in Asia, South America and Africa. In India, glanders re-emerged in 2006, and thereafter, increasing numbers of cases were reported in different regions of the country. Between 2013 and 2019, 39 B. mallei were isolated from glanders-affected horses (n = 30) and mules (n = 9) from seven states of India such as Uttar Pradesh, Haryana, Delhi, Himachal Pradesh, Gujarat, Maharashtra and Tamil Nadu. In this study, the phylogenetic relationships of these isolates were assessed by sequence analysis of 16S rDNA gene and ITS region. Purified PCR-amplified products of 16S rDNA gene and ITS region were sequenced, aligned and phylogenetic trees were constructed using MEGA 11 software. Additionally, B. mallei 16S rDNA (n = 36) and ITS (n = 18) sequences available in the GenBank were also included for analysis to determine the diversity of older B. mallei isolates with recent Indian isolates. Both the phylogeny showed that the majority of the recent isolates from India are closely related to each other, but are genetically diverse from older isolates that originated from India. Nucleotide substitutions were also observed in a single and double position in 12 recent and two old Indian isolates. The study also indicates that similar B. mallei strains were responsible for glanders outbreaks in different states (Uttar Pradesh- Himachal Pradesh and Uttar Pradesh- Haryana) and this is due to the migration of infected animals from one state to another state. This study implies that 16S rDNA and ITS region may be used for molecular characterization of B. mallei associated with glanders in resource-limited settings.


Assuntos
Burkholderia mallei , Mormo , Animais , Burkholderia mallei/genética , DNA Ribossômico/genética , Equidae , Cavalos , Índia , Filogenia
6.
Curr Microbiol ; 78(4): 1124-1134, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687511

RESUMO

Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand-receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host-pathogen interactions and assist novel strategies of drug discovery for coronaviruses.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , Técnicas de Visualização da Superfície Celular/métodos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Humanos
7.
Clin Microbiol Rev ; 31(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29976554

RESUMO

Coinfections involving viruses are being recognized to influence the disease pattern that occurs relative to that with single infection. Classically, we usually think of a clinical syndrome as the consequence of infection by a single virus that is isolated from clinical specimens. However, this biased laboratory approach omits detection of additional agents that could be contributing to the clinical outcome, including novel agents not usually considered pathogens. The presence of an additional agent may also interfere with the targeted isolation of a known virus. Viral interference, a phenomenon where one virus competitively suppresses replication of other coinfecting viruses, is the most common outcome of viral coinfections. In addition, coinfections can modulate virus virulence and cell death, thereby altering disease severity and epidemiology. Immunity to primary virus infection can also modulate immune responses to subsequent secondary infections. In this review, various virological mechanisms that determine viral persistence/exclusion during coinfections are discussed, and insights into the isolation/detection of multiple viruses are provided. We also discuss features of heterologous infections that impact the pattern of immune responsiveness that develops.


Assuntos
Coinfecção/imunologia , Coinfecção/virologia , Viroses/imunologia , Viroses/virologia , Humanos , Interferência Viral , Vírus/imunologia
8.
J Gen Virol ; 97(12): 3458-3466, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902329

RESUMO

The ecosystem is continuously exposed to a wide variety of antimicrobials through waste effluents, agricultural run-offs and animal-related and anthropogenic activities, which contribute to the spread of antibiotic resistance genes (ARGs). The contamination of ecosystems with ARGs may create increased opportunities for their transfer to naive microbes and eventually lead to entry into the human food chain. Transduction is a significant mechanism of horizontal gene transfer in natural environments, which has traditionally been underestimated as compared to transformation. We explored the presence of ARGs in environmental bacteriophages in order to recognize their contribution in the spread of ARGs in environmental settings. Bacteriophages were isolated against environmental bacterial isolates, purified and bulk cultured. They were characterized, and detection of ARG and intI genes including blaTEM, blaOXA-2, intI1, intI2, intI3, tetA and tetW was carried out by PCR. This study revealed the presence of various genes [tetA (12.7 %), intI1 (10.9 %), intI2 (10.9 %), intI3 (9.1 %), tetW (9.1 %) and blaOXA-2 (3.6 %)] and blaTEM in a significantly higher proportion (30.9 %). blaSHV, blaOXA-1, tetO, tetB, tetG, tetM and tetS were not detected in any of the phages. Soil phages were the most versatile in terms of ARG carriage. Also, the relative abundance of tetA differed significantly vis-à-vis source. The phages from organized farms showed varied ARGs as compared to the unorganized sector, although blaTEM ARG incidences did not differ significantly. The study reflects on the role of phages in dissemination of ARGs in environmental reservoirs, which may provide an early warning system for future clinically relevant resistance mechanisms.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/virologia , Bacteriófagos/genética , Farmacorresistência Bacteriana , Proteínas Virais/genética , Bactérias/genética , Bactérias/metabolismo , Bacteriófagos/isolamento & purificação , Bacteriófagos/metabolismo , Microbiologia Ambiental , Transferência Genética Horizontal , Proteínas Virais/metabolismo
9.
Virulence ; 15(1): 2324711, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38527940

RESUMO

Micro RNAs (miRNAs) have been implicated in the regulation of maturation, proliferation, differentiation, and activation of immune cells. In this study, we demonstrated that miR-29a antagonizes IFN-γ production at early times post-LSDV infection in cattle. miR-29a was predicted to target upstream IFN-γ regulators, and its inhibition resulted in enhanced IFN-γ production in sensitized peripheral blood mononuclear cells (PBMCs). Further, stimulation of PBMCs with LSDV antigen exhibited lower levels of miR-29a, concomitant with a potent cell-mediated immune response (CMI), characterized by an increase in LSDV-specific CD8+ T cell counts and enhanced levels of IFN-γ, which eventually facilitated virus clearance. In addition, a few immunocompromised cattle (developed secondary LSDV infection at ~ 6 months) that failed to mount a potent cell-mediated immune response, were shown to maintain higher miR-29a levels. Furthermore, as compared to the sensitized crossbred cattle, PBMCs from sensitized Rathi (a native Indian breed) animals exhibited lower levels of miR-29a along with an increase in CD8+ T cell counts and enhanced levels of IFN-γ. Finally, we analysed that a ≥ 60% decrease in miR-29a expression levels in the PBMCs of sensitized cattle correlated with a potent CMI response. In conclusion, miR-29a expression is involved in antagonizing the IFN-γ response in LSDV-infected cattle and may serve as a novel biomarker for the acute phase of LSDV infection, as well as predicting the functionality of T cells in sensitized cattle. In addition, Rathi cattle mount a more potent CMI response against LSDV than crossbred cattle.


Assuntos
Doenças dos Bovinos , Vírus da Doença Nodular Cutânea , MicroRNAs , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/genética , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Vírus da Doença Nodular Cutânea/genética , MicroRNAs/genética , Reação em Cadeia da Polimerase , Biomarcadores
10.
J Immunol Methods ; 519: 113521, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392930

RESUMO

Lumpy skin disease (LSD) has become the most important animal health problem in India due to high morbidity, mortality and production losses caused by it. A homologous live-attenuated LSD vaccine (Lumpi-ProVacInd) was recently developed by using a local LSD virus (LSDV) strain (LSDV/2019/India/Ranchi) in India which is likely to replace the existing practice of vaccinating cattle with goatpox vaccine. It is essential to differentiate the vaccine and field strains, if a live-attenuated vaccine has been used for control and eradication of the disease. As compared to the prevailing vaccine and field/virulent strains, the Indian vaccine strain (Lumpi-ProVacInd) has a unique deletion of 801 nucleotides in its inverted terminal repeat (ITR) region. We exploited this unique feature and developed a novel high resolution melting-based gap quantitative real-time PCR (HRM-gap-qRT-PCR) for rapid identification and quantitation of the vaccine and field strain(s) of LSDV.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Vacinas Virais , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/prevenção & controle , Vacinas Virais/genética , Reação em Cadeia da Polimerase em Tempo Real , Vacinas Atenuadas/genética
11.
Acta Trop ; 242: 106922, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031926

RESUMO

Countries in the Indian subcontinent are currently facing a deadly epidemic of lumpy skin disease (LSD).  LSD is primarily a disease of cattle. Buffaloes may sometimes develop mild illness, however, other domestic animals are considered resistant to LSD. We confirmed the LSDV infection in camels as evidenced by skin nodules on the body surface of the affected camels, isolation of LSD virus (LSDV) and amplification of LSDV-specific gene segments from the skin nodules (PCR), nucleotide sequencing of the viral genome and, demonstration of anti-LSDV antibodies in serum. Phylogenetic analysis based on nucleotide sequencing of ORF011, ORF012 and ORF036 revealed that the virus (LSDV/Camel/India/2022/Bikaner) is related to the historical NI-2490/Kenya/KSGP-like field strains which are predominantly circulating in the Indian subcontinent. This is the first report wherein LSDV has been to infect camels.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/epidemiologia , Camelus , Filogenia , Búfalos , Nucleotídeos , Surtos de Doenças/veterinária
12.
Virulence ; 14(1): 2190647, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36919498

RESUMO

Lumpy skin disease (LSD) was reported for the first time in India in 2019 and since then, it has become endemic. Since a homologous (LSD-virus based) vaccine was not available in the country, goatpox virus (GPV)-based heterologous vaccine was authorized for mass immunization to induce protection against LSD in cattle. This study describes the evaluation of safety, immunogenicity and efficacy of a new live-attenuated LSD vaccine developed by using an Indian field strain, isolated in 2019 from cattle. The virus was attenuated by continuous passage (P = 50) in Vero cells. The vaccine (50th LSDV passage in Vero cells, named as Lumpi-ProVacInd) did not induce any local or systemic reaction upon its experimental inoculation in calves (n = 10). At day 30 post-vaccination (pv), the vaccinated animals were shown to develop antibody- and cell-mediated immune responses and exhibited complete protection upon virulent LSDV challenge. A minimum Neethling response (0.018% animals; 5 out of 26,940 animals) of the vaccine was observed in the field trials conducted in 26,940 animals. There was no significant reduction in the milk yield in lactating animals (n = 10108), besides there was no abortion or any other reproductive disorder in the pregnant animals (n = 2889). Sero-conversion was observed in 85.18% animals in the field by day 30 pv.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Vacinas Virais , Animais , Bovinos , Feminino , Chlorocebus aethiops , Doença Nodular Cutânea/prevenção & controle , Doença Nodular Cutânea/epidemiologia , Vírus da Doença Nodular Cutânea/genética , Vacinas Atenuadas/efeitos adversos , Células Vero , Vacinas Virais/administração & dosagem
13.
Sci Rep ; 12(1): 17811, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280692

RESUMO

Rho-associated coiled-coil containing protein kinase 1 (ROCK1) intracellular cell signaling pathway regulates cell morphology, polarity, and cytoskeletal remodeling. We observed the activation of ROCK1/myosin light chain (MLC2) signaling pathway in buffalopox virus (BPXV) infected Vero cells. ROCK1 depletion by siRNA and specific small molecule chemical inhibitors (Thiazovivin and Y27632) resulted in a reduced BPXV replication, as evidenced by reductions in viral mRNA/protein synthesis, genome copy numbers and progeny virus particles. Further, we demonstrated that ROCK1 inhibition promotes deadenylation of viral mRNA (mRNA decay), mediated via inhibiting interaction with PABP [(poly(A)-binding protein] and enhancing the expression of CCR4-NOT (a multi-protein complex that plays an important role in deadenylation of mRNA). In addition, ROCK1/MLC2 mediated cell contraction, and perinuclear accumulation of p-MLC2 was shown to positively correlate with viral mRNA/protein synthesis. Finally, it was demonstrated that the long-term sequential passage (P = 50) of BPXV in the presence of Thiazovivin does not select for any drug-resistant virus variants. In conclusion, ROCK1/MLC2 cell signaling pathway facilitates BPXV replication by preventing viral mRNA decay and that the inhibitors targeting this pathway may have novel therapeutic effects against buffalopox.


Assuntos
Vaccinia virus , Quinases Associadas a rho , Chlorocebus aethiops , Animais , Quinases Associadas a rho/metabolismo , Vaccinia virus/genética , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , RNA Mensageiro/genética , Células Vero , RNA Interferente Pequeno
14.
Antiviral Res ; 197: 105232, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968527

RESUMO

We report the in vitro antiviral activity of DZNep (3-Deazaneplanocin A; an inhibitor of S-adenosylmethionine-dependent methyltransferase) against SARS-CoV-2, besides demonstrating its protective efficacy against lethal infection of infectious bronchitis virus (IBV, a member of the Coronaviridae family). DZNep treatment resulted in reduced synthesis of SARS-CoV-2 RNA and proteins without affecting other steps of viral life cycle. We demonstrated that deposition of N6-methyl adenosine (m6A) in SARS-CoV-2 RNA in the infected cells recruits heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), an RNA binding protein which serves as a m6A reader. DZNep inhibited the recruitment of hnRNPA1 at m6A-modified SARS-CoV-2 RNA which eventually suppressed the synthesis of the viral genome. In addition, m6A-marked RNA and hnRNPA1 interaction was also shown to regulate early translation to replication switch of SARS-CoV-2 genome. Furthermore, abrogation of methylation by DZNep also resulted in defective synthesis of the 5' cap of viral RNA, thereby resulting in its failure to interact with eIF4E (a cap-binding protein), eventually leading to a decreased synthesis of viral proteins. Most importantly, DZNep-resistant mutants could not be observed upon long-term sequential passage of SARS-CoV-2 in cell culture. In summary, we report the novel role of methylation in the life cycle of SARS-CoV-2 and propose that targeting the methylome using DZNep could be of significant therapeutic value against SARS-CoV-2 infection.


Assuntos
Adenosina/análogos & derivados , Genoma Viral/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Adenosina/farmacologia , Animais , Embrião de Galinha , Chlorocebus aethiops , Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Farmacorresistência Viral/efeitos dos fármacos , Genoma Viral/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Dose Letal Mediana , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , RNA Viral/metabolismo , Coelhos , SARS-CoV-2/genética , Organismos Livres de Patógenos Específicos , Transcrição Gênica/efeitos dos fármacos , Células Vero
15.
PLoS One ; 16(1): e0241022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428633

RESUMO

Lumpy skin disease (LSD) has devastating economic impact. During the last decade, LSD had spread to climatically new and previously disease-free countries, which also includes its recent emergence in the Indian subcontinent (2019). This study deals with the LSD outbreak(s) from cattle in Ranchi (India). Virus was isolated from the scabs (skin lesions) in the primary goat kidney cells. Phylogenetic analysis based on nucleotide sequencing of LSD virus (LSDV) ORF011, ORF012 and ORF036 suggested that the isolated virus (LSDV/Bos taurus-tc/India/2019/Ranchi) is closely related to Kenyan LSDV strains. Further, we adapted the isolated virus in Vero cells. Infection of the isolated LSDV to Vero cells did not produce cytopathic effect (CPE) until the 4th blind passage, but upon adaptation, it produced high viral titres in the cultured cells. The kinetics of viral DNA synthesis and one-step growth curve analysis suggested that Vero cell-adapted LSDV initiates synthesizing its genome at ~24 hours post-infection (hpi) with a peak level at ~96 hpi whereas evidence of progeny virus particles was observed at 36-48 hours (h) with a peak titre at ~120 h. To the best of our knowledge, this study describes the first successful isolation of LSDV in India, besides providing insights into the life cycle Vero cell-adapted LSDV.


Assuntos
Genoma Viral , Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/genética , Fases de Leitura Aberta , Filogenia , Animais , Bovinos , Chlorocebus aethiops , Surtos de Doenças , Índia/epidemiologia , Doença Nodular Cutânea/epidemiologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/metabolismo , Células Vero
16.
Front Cell Infect Microbiol ; 11: 771524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888260

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved to generate several antigenic variants. These variants have raised concerns whether pre-existing immunity to vaccination or prior infection would be able to protect against the newly emerging SARS-CoV-2 variants or not. We isolated SARS-CoV-2 from the coronavirus disease 2019 (COVID-19)-confirmed patients in the beginning of the first (April/May 2020) and second (April/May 2021) waves of COVID-19 in India (Hisar, Haryana). Upon complete nucleotide sequencing, the viruses were found to be genetically related with wild-type (WT) and Delta variants of SARS-CoV-2, respectively. The Delta variant of SARS-CoV-2 produced a rapid cytopathic effect (24-36 h as compared to 48-72 h in WT) and had bigger plaque size but a shorter life cycle (~6 h as compared to the ~8 h in WT). Furthermore, the Delta variant achieved peak viral titers within 24 h as compared to the 48 h in WT. These evidence suggested that the Delta variant replicates significantly faster than the WT SARS-CoV-2. The virus neutralization experiments indicated that antibodies elicited by vaccination are more efficacious in neutralizing the WT virus but significantly less potent against the Delta variant. Our findings have implications in devising suitable vaccination, diagnostic and therapeutic strategies, besides providing insights into understanding virus replication and transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Glicoproteína da Espícula de Coronavírus
17.
Antiviral Res ; 189: 105056, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711336

RESUMO

Emetine is a FDA-approved drug for the treatment of amebiasis. Previously we demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. In this study, we evaluated the in vitro antiviral efficacy of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and found it to be a low nanomolar (nM) inhibitor. Interestingly, emetine exhibited protective efficacy against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment led to a decrease in viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 mRNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, molecular docking and molecular dynamics simulation studies suggested that emetine may bind to the cap-binding pocket of eIF4E, in a similar conformation as m7-GTP binds. Additionally, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. Collectively our results suggest that further detailed evaluation of emetine as a potential treatment for COVID-19 may be warranted.


Assuntos
Antivirais , Emetina , Vírus da Bronquite Infecciosa/efeitos dos fármacos , RNA Viral/metabolismo , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Embrião de Galinha , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Emetina/farmacologia , Emetina/uso terapêutico , Fator de Iniciação 4E em Eucariotos/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Vero
18.
PLoS One ; 15(4): e0232093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330151

RESUMO

Bovine herpesvirus 1 (BoHV1) and 5 (BoHV5) are genetically and antigenically related alphaherpesviruses. Infection with one virus induces protective immunity against the other. However, disease associated with BoHV1 and BoHV5 varies significantly; whereas BoHV1 infection is usually associated with rhinotracheitis and abortion, BoHV5 causes encephalitis in cattle. BoHV5 outbreaks are sporadic and mainly restricted to the South American countries. We report BoHV5 infection for the first time from aborted cattle in India. Based on the characteristic cytopathic effects in MDBK cells, amplification of the viral genome by PCR, differential PCR for BoHV1/BoHV5, nucleotide sequencing and restriction endonuclease patterns, identity of the virus was confirmed as BoHV5 subtype A. Serum samples from the aborted cattle strongly neutralized both BoHV1 and BoHV5 suggesting an active viral infection in the herd. Upon UL27, UL44 and UL54 gene-based sequence and phylogenetic analysis, the isolated virus clustered with BoHV5 strains and showed highest similarity with the Brazilian BoHV5 strains.


Assuntos
Herpesvirus Bovino 5/genética , Herpesvirus Bovino 5/isolamento & purificação , Herpesvirus Bovino 5/metabolismo , Alphaherpesvirinae/genética , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Genoma Viral/genética , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Índia , Filogenia
19.
Antiviral Res ; 181: 104870, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32707051

RESUMO

We describe herein that Apigenin, which is a dietary flavonoid, exerts a strong in vitro and in ovo antiviral efficacy against buffalopox virus (BPXV). Apigenin treatment was shown to inhibit synthesis of viral DNA, mRNA and proteins, without affecting other steps of viral life cycle such as attachment, entry and budding. Although the major mode of antiviral action of Apigenin was shown to be mediated via targeting certain cellular factors, a modest inhibitory effect of Apigenin was also observed directly on viral polymerase. We also evaluated the selection of drug-resistant virus variants under long-term selection pressure of Apigenin. Wherein Apigenin-resistant mutants were not observed up to ~ P20 (passage 20), a significant resistance was observed to the antiviral action of Apigenin at ~ P30. However, a high degree resistance could not be observed even up to P60. To the best of our knowledge, this is the first report describing in vitro and in ovo antiviral efficacy of Apigenin against poxvirus infection. The study also provides mechanistic insights on the antiviral activity of Apigenin and selection of potential Apigenin-resistant mutants upon long-term culture.


Assuntos
Antivirais/farmacologia , Apigenina/farmacologia , Farmacorresistência Viral , Vaccinia virus/efeitos dos fármacos , Animais , Embrião de Galinha/virologia , Galinhas , Chlorocebus aethiops , DNA Viral/genética , DNA Polimerase Dirigida por DNA , Humanos , Vaccinia virus/enzimologia , Células Vero , Replicação Viral/efeitos dos fármacos
20.
Front Microbiol ; 10: 209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814986

RESUMO

Sarco/endoplasmic reticulum calcium-ATPase (SERCA) is a membrane-bound cytosolic enzyme which is known to regulate the uptake of calcium into the sarco/endoplasmic reticulum. Herein, we demonstrate for the first time that SERCA can also regulate virus replication. Treatment of Vero cells with SERCA-specific inhibitor (Thapsigargin) at a concentration that is nontoxic to the cells significantly reduced Peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV) replication. Conversely, overexpression of SERCA rescued the inhibitory effect of Thapsigargin on virus replication. PPRV and NDV infection induced SERCA expression in Vero cells, which could be blocked by Thapsigargin. Besides inducing enhanced formation of cytoplasmic foci, Thapsigargin was shown to block viral entry into the target cells as well as synthesis of viral proteins. Furthermore, NDV was shown to acquire significant resistance to Thapsigargin upon long-term passage (P) in Vero cells. As compared to the P0 and P70-Control, the fusion (F) protein of P70-Thapsigargin virus exhibited a unique mutation at amino acid residue 104 (E104K), whereas no Thapsigargin-associated mutations were observed in HN gene. To the best of our knowledge, this is the first report describing the virus-supportive role of SERCA and a rare report suggesting that viruses may acquire resistance even in the presence of an inhibitor that targets a cellular factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA