Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; : e5173, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783837

RESUMO

PURPOSE: The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task. METHODS: A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated. RESULTS: The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy. CONCLUSIONS: This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.

2.
J Magn Reson Imaging ; 59(3): 784-796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37466278

RESUMO

"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.


Assuntos
Asma , Fibrose Cística , Infecções por Papillomavirus , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Imageamento por Ressonância Magnética/métodos , Perfusão
3.
Magn Reson Med ; 90(1): 231-239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36806110

RESUMO

PURPOSE: To apply a navigator-based slice-tracking method to prospectively compensate respiratory motion for kidney pseudo-continuous arterial spin labeling (pCASL), using spin-echo (SE) EPI acquisition. METHODS: A single gradient-echo slice selection and projection readout at the location of the diaphragm along the inferior-superior direction was applied as a navigator. Navigator acquisition and fat suppression were inserted before each transverse imaging slice of the readouts of a 2D-SE-EPI-based pCASL sequence. Motion information was calculated after exclusion of the signal saturation in the navigator signal caused by EPI excitations. The motion information was then used to directly adjust the slice positioning in real time. RESULTS: The respiratory motion from the navigator signal was calculated, and slice positioning was changed in real time based on the motion information. We could show that motion compensation reduces kidney movement, and that the coefficients of variation across renal perfusion values were significantly reduced when motion correction was applied. The average reduction of coefficients of variation was approximately 20%, resulting in a more accurate and detailed structure of the respective perfusion maps. CONCLUSIONS: This study demonstrates the feasibility of a navigator-based slice-tracking technique in kidney imaging with a SE-EPI readout pCASL sequence to reduce kidney motion.


Assuntos
Artérias , Encéfalo , Marcadores de Spin , Movimento (Física) , Rim/diagnóstico por imagem
4.
Eur Radiol ; 32(3): 1879-1890, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34553255

RESUMO

OBJECTIVES: Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical meaningfulness of perfusion defects in percent (QDP) using DCE-MRI. METHODS: We investigated a subset of baseline DCE-MRIs, paired inspiratory/expiratory CTs, and pulmonary function testing (PFT) of 83 subjects (age = 65.7 ± 9.0 years, patients-at-risk, and all GOLD groups) from one center of the "COSYCONET" COPD cohort. QDP was computed from DCE-MRI using an in-house developed quantification pipeline, including four different approaches: Otsu's method, k-means clustering, texture analysis, and 80th percentile threshold. QDP was compared with visual MRI perfusion scoring, CT parametric response mapping (PRM) indices of emphysema (PRMEmph) and functional small airway disease (PRMfSAD), and FEV1/FVC from PFT. RESULTS: All QDP approaches showed high correlations with the MRI perfusion score (r = 0.67 to 0.72, p < 0.001), with the highest association based on Otsu's method (r = 0.72, p < 0.001). QDP correlated significantly with all PRM indices (p < 0.001), with the strongest correlations with PRMEmph (r = 0.70 to 0.75, p < 0.001). QDP was distinctly higher than PRMEmph (mean difference = 35.85 to 40.40) and PRMfSAD (mean difference = 15.12 to 19.68), but in close agreement when combining both PRM indices (mean difference = 1.47 to 6.03) for all QDP approaches. QDP correlated moderately with FEV1/FVC (r = - 0.54 to - 0.41, p < 0.001). CONCLUSION: QDP is associated with established markers of disease severity and the extent corresponds to the CT-derived combined extent of PRMEmph and PRMfSAD. We propose to use QDP based on Otsu's method for future clinical studies in COPD. KEY POINTS: • QDP quantified from DCE-MRI is associated with visual MRI perfusion score, CT PRM indices, and PFT. • The extent of QDP from DCE-MRI corresponds to the combined extent of PRMEmph and PRMfSAD from CT. • Assessing pulmonary perfusion abnormalities using DCE-MRI with QDP improved the correlations with CT PRM indices and PFT compared to the quantification of pulmonary blood flow and volume.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Idoso , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Perfusão , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Enfisema Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X
5.
J Magn Reson Imaging ; 54(5): 1562-1571, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34050576

RESUMO

BACKGROUND: There is a clinical need for imaging-derived biomarkers for the management of chronic obstructive pulmonary disease (COPD). Observed pulmonary T1 (T1 (TE)) depends on the echo-time (TE) and reflects regional pulmonary function. PURPOSE: To investigate the potential diagnostic value of T1 (TE) for the assessment of lung disease in COPD patients by determining correlations with clinical parameters and quantitative CT. STUDY TYPE: Prospective non-randomized diagnostic study. POPULATION: Thirty COPD patients (67.7 ± 6.6 years). Data from a previous study (15 healthy volunteers [26.2 ± 3.9 years) were used as reference. FIELD STRENGTH/SEQUENCE: Study participants were examined at 1.5 T using dynamic contrast-enhanced three-dimensional gradient echo keyhole perfusion sequence and a multi-echo inversion recovery two-dimensional UTE (ultra-short TE) sequence for T1 (TE) mapping at TE1-5  = 70 µsec, 500 µsec, 1200 µsec, 1650 µsec, and 2300 µsec. ASSESSMENT: Perfusion images were scored by three radiologists. T1 (TE) was automatically quantified. Computed tomography (CT) images were quantified in software (qCT). Clinical parameters including pulmonary function testing were also acquired. STATISTICAL TESTS: Spearman rank correlation coefficients (ρ) were calculated between T1 (TE) and perfusion scores, clinical parameters and qCT. A P-value <0.05 was considered statistically significant. RESULTS: Median values were T1 (TE1-5 ) = 644 ± 78 msec, 835 ± 92 msec, 835 ± 87 msec, 831 ± 131 msec, 893 ± 220 msec, all significantly shorter than previously reported in healthy subjects. A significant increase of T1 was observed from TE1 to TE2 , with no changes from TE2 to TE3 (P = 0.48), TE3 to TE4 (P = 0.94) or TE4 to TE5 (P = 0.02) which demonstrates an increase at shorter TEs than in healthy subjects. Moderate to strong Spearman's correlations between T1 and parameters including the predicted diffusing capacity for carbon monoxide (DLCO, ρ < 0.70), mean lung density (MLD, ρ < 0.72) and the perfusion score (ρ > -0.69) were found. Overall, correlations were strongest at TE2 , weaker at TE1 and rarely significant at TE4 -TE5 . DATA CONCLUSION: In COPD patients, the increase of T1 (TE) with TE occurred at shorter TEs than previously found in healthy subjects. Together with the lack of correlation between T1 and clinical parameters of disease at longer TEs, this suggests that T1 (TE) quantification in COPD patients requires shorter TEs. The TE-dependence of correlations implies that T1 (TE) mapping might be developed further to provide diagnostic information beyond T1 at a single TE. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Imageamento por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/diagnóstico por imagem , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Testes de Função Respiratória
6.
J Magn Reson Imaging ; 52(6): 1645-1654, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32613717

RESUMO

BACKGROUND: Noninvasive monitoring of early abnormalities and therapeutic intervention in cystic fibrosis (CF) lung disease using MRI is important. Lung T1 mapping has shown potential for local functional imaging without contrast material. Recently, it was discovered that observed lung T1 depends on the measurement echo time (TE). PURPOSE: To examine TE-dependence of observed T1 in patients with CF and its correlation with clinical metrics. STUDY TYPE: Prospective. POPULATION: In all, 75 pediatric patients with CF (8.6 ± 6.1 years, range 0.1-23 years), with 32 reexamined after 1 year. FIELD STRENGTH/SEQUENCE: Patients were examined at 1.5T using an established MRI protocol and a multiecho inversion recovery 2D ultrashort echo time (UTE) sequence for T1 (TE) mapping at five TEs including TE1 = 70 µs. ASSESSMENT: Morphological and perfusion MRI were assessed by a radiologist (M.W.) with 11 years of experience using an established CF-MRI scoring system. T1 (TE) was quantified automatically. Clinical data including spirometry (FEV1pred%) and lung clearance index (LCI) were collected. STATISTICAL TESTS: T1 (TE) was correlated with the CF-MRI score, clinical data, and LCI. RESULTS: T1 (TE) showed a different curvature in CF than in healthy adults: T1 at TE1 was shorter in CF (1157 ms ± 73 ms vs. 1047 ms ± 70 ms, P < 0.001), but longer at TE3 (1214 ms ± 72 ms vs. 1314 ms ± 68 ms, P < 0.001) and later TEs. The correlations of T1 (TE) with patient age (ρTE1-TE5 = -0.55, -0.44, -0.24, -0.30, -0.22), and LCI (ρTE1-TE5 = -0.43, -0.42, -0.33, 0.27, -0.22) were moderate at ultra-short to short TE (P < 0.001) but decreased for longer TE. Moderate but similar correlations at all TE were found with MRI perfusion score (ρTE1-TE5 = -0.43, -0.51, -0.47, -0.46, -0.44) and FEV1pred% (ρTE1-TE5 = +0.44, +0.44, +0.43, +0.40, +0.39) (P < 0.05). DATA CONCLUSION: TE should be considered when measuring lung T1 , since observed differences between CF and healthy subjects strongly depend on TE. The different variation of correlation coefficients with TE for structural vs. functional metrics implies that TE-dependence holds additional information which may help to discern effects of tissue structural abnormalities and abnormal perfusion. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1645-1654.


Assuntos
Fibrose Cística , Adulto , Benchmarking , Criança , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , Testes de Função Respiratória
7.
J Magn Reson Imaging ; 41(6): 1708-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25044618

RESUMO

PURPOSE: To provide a robust method for the simultaneous quantification of T1 and T2 * in the human lung during free breathing. Breathing pure oxygen accelerates T1 and T2 * relaxation in the lung. While T1 shortening reflects an increased amount of dissolved molecular oxygen in lung tissue, T2 * shortening shows an increased concentration of oxygen in the alveolar gas. Therefore, both parameters reflect different aspects of the oxygen uptake and provide complementary lung functional information. MATERIALS AND METHODS: A segmented inversion recovery Look-Locker multiecho sequence based on a multiecho 2D ultrashort TE (UTE) was employed for simultaneous T1 and T2 * quantification. The radial projections follow a modified golden angle ordering, allowing for respiratory self-gating and thus the reconstruction of a series of differently T1 and T2 *-weighted images in arbitrary breathing states. The method was evaluated in nine healthy volunteers while breathing room air and pure oxygen, with two volunteers examined at five oxygen concentrations. RESULTS: Relative differences of ΔT1 between 7.9% and 12.7% and of ΔT2 * between 13.2% and 6.0% were found. CONCLUSION: The proposed method provides inherently coregistered, quantitative T1 and T2 * maps in both expiration and inspiration from a single measurement acquired during free breathing and is thus well suited for clinical application.


Assuntos
Aumento da Imagem/métodos , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Oxigênio/administração & dosagem , Respiração , Voluntários Saudáveis , Humanos
8.
J Magn Reson Imaging ; 42(3): 610-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25604043

RESUMO

BACKGROUND: This work is intended to demonstrate that T1 measured in the lungs depends on the echo time (TE) used. Measuring lung T1 can be used to gain quantitative morphological and functional information. It is also shown that this dependence is particularly visible when using an ultra-short TE (UTE) sequence with TE well below 1 ms for T1 quantification in lung tissue, rather than techniques with TE on the order of 1-2 ms. METHODS: The lungs of 12 healthy volunteers (aged 22 to 33 years) were examined at 1.5 Tesla. A segmented inversion recovery Look-Locker multi-echo sequence based on two-dimensional UTE was used for independent T1 quantification at five TEs between TE1 = 70 µs and TE5 = 2.3 ms. RESULTS: The measured T1 was found to increase gradually with TE from 1060 ± 40 ms at TE1 to 1389 ± 53 ms at TE5 (P < 0.001). CONCLUSION: Measuring T1 at ultra-short echo times reveals a significant dependence of observed T1 on the echo time. Thus, any comparison of T1 values should also consider the TEs used. However, this dependence on TE could also be exploited to gain additional diagnostic information on the tissue compartments in the lung.


Assuntos
Pulmão/patologia , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Meios de Contraste/química , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Imagens de Fantasmas , Razão Sinal-Ruído , Fatores de Tempo , Adulto Jovem
9.
Magn Reson Imaging ; 105: 75-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939972

RESUMO

PURPOSE: To apply multi-shot high-resolution multi inversion spin and gradient echo (MI-SAGE) acquisition for simultaneous liver T1, T2 and T2* mapping. METHODS: Inversion prepared spin- and gradient-echo EPI was developed with ascending slice order across measurements for efficient acquisition with T1, T2, and T2⁎ weighting. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which were compared to T1 measured by modified Look-Locker (MOLLI), T1 measured by variable flip angle (VFA), T2 measured by multiple echo time-based Half Fourier Single-shot Turbo spin-Echo (HASTE), T2 measured by radial turbo-spin-echo (rTSE) and T2⁎ measured by multiple gradient echo (MGRE) sequences. RESULTS: The multi-shot variant of the sequence achieved higher in-plane resolution of 1.7 × 1.7 mm2 with good image quality in 28 s. Derived quantitative maps showed comparable values to conventional mapping methods. As measured in phantom and in vivo, MOLLI, MESE and MGRE give closest values to MISAGE. VFA, HASTE and rTSE show obvious overestimation. CONCLUSIONS: The proposed multi-shot inversion prepared spin- and gradient-echo EPI sequence allows for high-resolution quantitative T1, T2 and T2 liver tissue characterization in a single breath-hold scan.


Assuntos
Fígado , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Suspensão da Respiração , Imagens de Fantasmas
10.
Z Med Phys ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960810

RESUMO

PURPOSE: To apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free-breathing liver perfusion measurement without contrast agent. METHODS: Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery. RESULTS: The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 ±â€¯18.44% for control images, and 29.89 ±â€¯20.83% for label images (p < 0.001). The resulting maps of normalized ASL signal (normalized to M0) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques. CONCLUSIONS: This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.

11.
Magn Reson Imaging ; 98: 26-35, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603781

RESUMO

OBJECTIVES: To apply a navigator-based slice tracking method to prospectively compensate the respiratory motion for kidney vessel architecture imaging (VAI). MATERIALS AND METHODS: A dual gradient echo spin echo 2D EPI sequence was developed for kidney VAI. A single gradient-echo slice selection and projection readout at the location of the diaphragm along the inferior-superior direction was applied as a navigator. Navigator acquisition and fat suppression were inserted before each transverse imaging slice. Motion information was calculated after exclusion of the signal saturation in the navigator signal caused by imaging slices. The motion information was then directly sent back to the sequence and slice positioning was adjusted in real-time. The whole sequence was applied during a contrast agent pass-through. RESULTS: VAI parametric maps show the structural heterogeneity of the renal vasculature. The respiratory motion from the navigator signal was precisely calculated and slice positioning was changed in real-time based on the motion information. The vibration amplitude of the signal intensity of the liver tissue at the liver-lung interface in the case of prospective motion correction (PMC) on is about 28% of the PMC off case. Compared to the case of PMC off, the coefficient of variation was reduced 30% of the case of PMC on. CONCLUSIONS: This study demonstrates the feasibility of the motion-compensating technique in kidney VAI. The sequence may improve the evaluation of microvasculature in kidney diseases.


Assuntos
Meios de Contraste , Fígado , Estudos Prospectivos , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Artefatos
12.
Ann Am Thorac Soc ; 20(11): 1595-1604, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579262

RESUMO

Rationale: Magnetic resonance imaging (MRI) detects improvements in mucus plugging and bronchial wall thickening, but not in lung perfusion in patients with cystic fibrosis (CF) treated with elexacaftor/tezacaftor/ivacaftor (ETI). Objectives: To determine whether bronchial artery dilatation (BAD), a key feature of advanced lung disease, indicates irreversibility of perfusion abnormalities and whether BAD could be reversed in CF patients treated with ETI. Methods: A total of 59 adults with CF underwent longitudinal chest MRI, including magnetic resonance angiography twice, comprising 35 patients with CF (mean age, 31 ± 7 yr) before (MRI1) and after (MRI2) at least 1 month (mean duration, 8 ± 4 mo) on ETI therapy and 24 control patients with CF (mean age, 31 ± 7 yr) without ETI. MRI was assessed using the validated chest MRI score, and the presence and total lumen area of BAD were assessed with commercial software. Results: The MRI global score was stable in the control group from MRI1 to MRI2 (mean difference, 1.1 [-0.3, 2.4]; P = 0.054), but it was reduced in the ETI group (-10.1 [-0.3, 2.4]; P < 0.001). In the control and ETI groups, BAD was present in almost all patients at baseline (95% and 94%, respectively), which did not change at MRI2. The BAD total lumen area did not change in the control group from MRI1 to MRI2 (1.0 mm2 [-0.2, 2.2]; P = 0.099) but decreased in the ETI group (-7.0 mm2 [-8.9, -5.0]; P < 0.001). This decrease correlated with improvements in the MRI global score (r = 0.540; P < 0.001). Conclusions: Our data show that BAD may be partially reversible under ETI therapy in adult patients with CF who have established disease.


Assuntos
Fibrose Cística , Adulto , Humanos , Adulto Jovem , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/tratamento farmacológico , Artérias Brônquicas/diagnóstico por imagem , Dilatação , Imageamento por Ressonância Magnética , Regulador de Condutância Transmembrana em Fibrose Cística , Mutação , Aminofenóis
13.
Radiol Cardiothorac Imaging ; 5(2): e220176, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124637

RESUMO

Purpose: To investigate morphofunctional chest MRI for the detection and management of incidental pulmonary nodules in participants with chronic obstructive pulmonary disease (COPD). Materials and Methods: In this prospective study, 567 participants (mean age, 66 years ± 9 [SD]; 340 men) underwent same-day contrast-enhanced MRI and nonenhanced low-dose CT (LDCT) in a nationwide multicenter trial (clinicaltrials.gov: NCT01245933). Nodule dimensions, morphologic features, and Lung Imaging Reporting and Data System (Lung-RADS) category were assessed at MRI by two blinded radiologists, and consensual LDCT results served as the reference standard. Comparisons were performed using the Student t test, and agreements were assessed using the Cohen weighted κ. Results: A total of 525 nodules larger than 3 mm in diameter were detected at LDCT in 178 participants, with a mean diameter of 7.2 mm ± 6.1 (range, 3.1-63.1 mm). Nodules were not detected in the remaining 389 participants. Sensitivity and positive predictive values with MRI for readers 1 and 2, respectively, were 63.0% and 84.8% and 60.2% and 83.9% for solid nodules (n = 495), 17.6% and 75.0% and 17.6% and 60.0% for part-solid nodules (n = 17), and 7.7% and 100% and 7.7% and 50.0% for ground-glass nodules (n = 13). For nodules 6 mm or greater in diameter, sensitivity and positive predictive values were 73.3% and 92.2% for reader 1 and 71.4% and 93.2% for reader 2, respectively. Readers underestimated the long-axis diameter at MRI by 0.5 mm ± 1.7 (reader 1) and 0.5 mm ± 1.5 (reader 2) compared with LDCT (P < .001). For Lung-RADS categorization per nodule using MRI, there was substantial to perfect interreader agreement (κ = 0.75-1.00) and intermethod agreement compared with LDCT (κ = 0.70-1.00 and 0.69-1.00). Conclusion: In a multicenter setting, morphofunctional MRI showed moderate sensitivity for detection of incidental pulmonary nodules in participants with COPD but high agreement with LDCT for Lung-RADS classification of nodules.Clinical trial registration no. NCT01245933 and NCT02629432Keywords: MRI, CT, Thorax, Lung, Chronic Obstructive Pulmonary Disease, Screening© RSNA, 2023 Supplemental material is available for this article.

14.
Front Med (Lausanne) ; 10: 1254003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249975

RESUMO

Introduction: Due to hypoxic vasoconstriction, perfusion is interesting in the lungs. Magnetic Resonance Imaging (MRI) perfusion imaging based on Dynamic Contrast Enhancement (DCE) has been demonstrated in patients with Chronic Obstructive Pulmonary Diseases (COPD) using visual scores, and quantification methods were recently developed further. Inter-patient correlations of echo time-dependent observed T1 [T1(TE)] have been shown with perfusion scores, pulmonary function testing, and quantitative computed tomography. Here, we examined T1(TE) quantification and quantitative perfusion MRI together and investigated both inter-patient and local correlations between T1(TE) and quantitative perfusion. Methods: 22 patients (age 68.0 ± 6.2) with COPD were examined using morphological MRI, inversion recovery multi-echo 2D ultra-short TE (UTE) in 1-2 slices for T1(TE) mapping, and 4D Time-resolved angiography With Stochastic Trajectories (TWIST) for DCE. T1(TE) maps were calculated from 2D UTE at five TEs from 70 to 2,300 µs. Pulmonary Blood Flow (PBF) and perfusion defect (QDP) maps were produced from DCE measurements. Lungs were automatically segmented on UTE images and morphological MRI and these segmentations registered to DCE images. DCE images were separately registered to UTE in corresponding slices and divided into corresponding subdivisions. Spearman's correlation coefficients were calculated for inter-patient correlations using the entire segmented slices and for local correlations separately using registered images and subdivisions for each TE. Median T1(TE) in normal and defect areas according to QDP maps were compared. Results: Inter-patient correlations were strongest on average at TE2 = 500 µs, reaching up to |ρ| = 0.64 for T1 with PBF and |ρ| = 0.76 with QDP. Generally, local correlations of T1 with PBF were weaker at TE2 than at TE1 or TE3 and with maximum values of |ρ| = 0.66 (from registration) and |ρ| = 0.69 (from subdivision). In 18 patients, T1 was shorter in defect areas than in normal areas, with the relative difference smallest at TE2. Discussion: The inter-patient correlations of T1 with PBF and QDP found show similar strength and TE-dependence as those previously reported for visual perfusion scores and quantitative computed tomography. The local correlations and median T1 suggest that not only base T1 but also the TE-dependence of observed T1 in normal areas is closer to that found previously in healthy volunteers than in defect areas.

15.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37009019

RESUMO

Background: Bronchial artery dilatation (BAD) is associated with haemoptysis in advanced cystic fibrosis (CF) lung disease. Our aim was to evaluate BAD onset and its association with disease severity by magnetic resonance imaging (MRI). Methods: 188 CF patients (mean±sd age 13.8±10.6 years, range 1.1-55.2 years) underwent annual chest MRI (median three exams, range one to six exams), contributing a total of 485 MRI exams including perfusion MRI. Presence of BAD was evaluated by two radiologists in consensus. Disease severity was assessed using the validated MRI scoring system and spirometry (forced expiratory volume in 1 s (FEV1) % pred). Results: MRI demonstrated BAD in 71 (37.8%) CF patients consistently from the first available exam and a further 10 (5.3%) patients first developed BAD during surveillance. Mean MRI global score in patients with BAD was 24.5±8.3 compared with 11.8±7.0 in patients without BAD (p<0.001) and FEV1 % pred was lower in patients with BAD compared with patients without BAD (60.8% versus 82.0%; p<0.001). BAD was more prevalent in patients with chronic Pseudomonas aeruginosa infection versus in patients without infection (63.6% versus 28.0%; p<0.001). In the 10 patients who newly developed BAD, the MRI global score increased from 15.1±7.8 before to 22.0±5.4 at first detection of BAD (p<0.05). Youden indices for the presence of BAD were 0.57 for age (cut-off 11.2 years), 0.65 for FEV1 % pred (cut-off 74.2%) and 0.62 for MRI global score (cut-off 15.5) (p<0.001). Conclusions: MRI detects BAD in patients with CF without radiation exposure. Onset of BAD is associated with increased MRI scores, worse lung function and chronic P. aeruginosa infection, and may serve as a marker of disease severity.

16.
Med Phys ; 49(9): 5981-5992, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35638106

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) of the lung can be used for diagnosis and monitoring of interstitial lung disease. Biophysical models of alveolar lung tissue are needed to understand the complex interplay of susceptibility, diffusion, and flow effects, and their influence on magnetic resonance (MR) spin dephasing. METHODS: In this work, we present a method for modeling the signal decay of lung tissue by utilizing a two-compartment model, which considers the different spin dephasing mechanisms in the alveolar vasculature and interstitial tissue. This allows calculating the magnetization dynamics and the MR lineshape, which can be measured noninvasively using clinical MR scanners. RESULTS: The accuracy of the method was evaluated using finite element simulations and the experimentally measured lineshapes of a healthy volunteer. In this comparison, the model performs well, indicating that the relevant spin dephasing mechanisms are correctly taken into account. CONCLUSIONS: The proposed method can be used to estimate the influence of blood flow and alveolar geometry on the MR lineshape of lung tissue.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Difusão , Humanos , Pulmão/diagnóstico por imagem , Espectroscopia de Ressonância Magnética
17.
J Cyst Fibros ; 21(6): 1053-1060, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35400600

RESUMO

BACKGROUND: Therapy with Elexacaftor/Tezacaftor/Ivacaftor (ETI) was recently approved for adult cystic fibrosis (CF) patients with at least one F508del mutation. However, its effects on structural and functional lung abnormalities and chronic rhinosinusitis have not been studied by imaging. METHODS: 19 adults with CF (mean age 31±9y, range 19-55y) underwent standardized chest magnetic resonance imaging (MRI), and nine also same-session sinonasal MRI, before (MRI1) and after (MRI2) at least one month (mean duration 5 ± 3mon) on ETI. 24 control CF patients (30±7y, range 20-44y) without ETI underwent longitudinal chest MRI, and eleven also sinonasal MRI, twice (mean interval 40±15mon). MRI was assessed using the validated chest MRI score and chronic rhinosinusitis (CRS)-MRI score. Forced expiratory volume in 1 s percent predicted (FEV1%) was measured in all patients. RESULTS: In controls, the chest MRI global score and CRS-MRI sum score were stable from MRI1 to MRI2. In patients under ETI, the chest MRI global score improved (-11.4 ± 4.6, P<0.001), mainly due to reduction of bronchiectasis/wall thickening and mucus plugging subscores (-3.3 ± 2.2 and -5.2 ± 1.5, P<0.001, respectively). The improvement in chest MRI score correlated well with improved FEV1% (r=-0.703, P<0.001). The CRS-MRI sum score also improved in patients under ETI (-6.9 ± 3.0, P<0.001), mainly due to a reduction of mucopyoceles in the maxillary and ethmoid sinus (-50% and -39%, P<0.05, respectively). CONCLUSIONS: MRI detects improvements of chest MRI and CRS-MRI scores in adult CF patients who first received ETI, demonstrating reversibility of structural lung and paranasal sinus abnormalities in patients with established disease.


Assuntos
Fibrose Cística , Adulto , Humanos , Adulto Jovem , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Fibrose Cística/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Aminofenóis , Benzodioxóis , Pulmão/diagnóstico por imagem , Mutação , Imageamento por Ressonância Magnética
18.
Front Med (Lausanne) ; 9: 1022981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353218

RESUMO

Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the assessment of pulmonary perfusion, which may play a key role in the development of muco-obstructive lung disease. One problem with quantifying pulmonary perfusion is the high variability of metrics. Quantifying the extent of abnormalities using unsupervised clustering algorithms in residue function maps leads to intrinsic normalization and could reduce variability. Purpose: We investigated the reproducibility of perfusion defects in percent (QDP) in clinically stable patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Methods: 15 CF (29.3 ± 9.3y, FEV1%predicted = 66.6 ± 15.8%) and 20 COPD (66.5 ± 8.9y, FEV1%predicted = 42.0 ± 13.3%) patients underwent DCE-MRI twice 1 month apart. QDP, pulmonary blood flow (PBF), and pulmonary blood volume (PBV) were computed from residue function maps using an in-house quantification pipeline. A previously validated MRI perfusion score was visually assessed by an expert reader. Results: Overall, mean QDP, PBF, and PBV did not change within 1 month, except for QDP in COPD (p < 0.05). We observed smaller limits of agreement (± 1.96 SD) related to the median for QDP (CF: ± 38%, COPD: ± 37%) compared to PBF (CF: ± 89%, COPD: ± 55%) and PBV (CF: ± 55%, COPD: ± 51%). QDP correlated moderately with the MRI perfusion score in CF (r = 0.46, p < 0.05) and COPD (r = 0.66, p < 0.001). PBF and PBV correlated poorly with the MRI perfusion score in CF (r =-0.29, p = 0.132 and r =-0.35, p = 0.067, respectively) and moderately in COPD (r =-0.57 and r =-0.57, p < 0.001, respectively). Conclusion: In patients with muco-obstructive lung diseases, QDP was more robust and showed a higher correlation with the MRI perfusion score compared to the traditionally used perfusion metrics PBF and PBV.

19.
Rofo ; 191(5): 415-423, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30257269

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) of the pulmonary parenchyma is generally hampered by multiple challenges related to patient respiratory- and circulation-related motion, low proton density and extremely fast signal decay due to the structure of the lungs evolved for gas exchange. METHODS: Systematic literature database research as well as annual participation in conferences dedicated to pulmonary MRI for more than the past 20 years by at least one member of the author team. RESULTS AND CONCLUSION: The problem of motion has been addressed in the past by developments such as triggering, gating and parallel imaging. The second problem has, in part, turned out to be an advantage in those diseases that lead to an increase in lung substance and thus an increase in signal relative to the background. To reduce signal decay, ultrashort echo time (UTE) methods were developed to minimize the time between excitation and readout. Having been postulated a while ago, improved hardware and software now open up the possibility of achieving echo times shorter than 200 µs, increasing lung signal significantly by forestalling signal decay and more effectively using the few protons available. Such UTE techniques may not only improve structural imaging of the lung but also enhance functional imaging, including ventilation and perfusion imaging as well as quantitative parameter mapping. Because of accelerating progress in this field of lung MRI, the review at hand seeks to introduce some technical properties as well as to summarize the growing data from applications in humans and disease, which promise that UTE MRI will play an important role in the morphological and functional assessment of the lung in the near future. KEY POINTS: · Ultrashort echo time MRI is technically feasible with state-of-the-art scanner hardware.. · UTE MRI allows for CT-like image quality for structural lung imaging.. · Preliminary studies show improvements over conventional morphological imaging in lung cancer and airways diseases.. · UTE may improve sensitivity for functional processes like perfusion and tissue characterization.. CITATION FORMAT: · Wielpütz MO, Triphan SM, Ohno Y et al. Outracing Lung Signal Decay - Potential of Ultrashort Echo Time MRI. Fortschr Röntgenstr 2019; 191: 415 - 423.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Fibrose Cística/diagnóstico por imagem , Humanos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/métodos , Recém-Nascido , Pulmão/irrigação sanguínea , Pneumopatias/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Movimento/fisiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Fluxo Sanguíneo Regional/fisiologia , Respiração , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico por imagem , Sensibilidade e Especificidade
20.
PLoS One ; 14(8): e0220939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398234

RESUMO

OBJECTIVES: To apply the MB (multiband) excitation and blipped-CAIPI (blipped-controlled aliasing in parallel imaging) techniques in a spin and gradient-echo (SAGE) EPI sequence to improve the slice coverage for vessel architecture imaging (VAI). MATERIALS AND METHODS: Both MB excitation and blipped-CAIPI with in-plane parallel imaging were incorporated into a gradient-echo (GE)/spin-echo (SE) EPI sequence for simultaneous tracking of the dynamic MR signal changes in both GE and SE contrasts after the injection of contrast agent. MB and singleband (SB) excitation were compared using a 20-channel head coil at 3 Tesla, and high-resolution MB VAI could be performed in 32 glioma patients. RESULTS: Whole-brain covered high resolution VAI can be achieved after applying multiband excitation with a factor of 2 and in-plane parallel imaging with a factor of 3. The quality of the images resulting from MB acceleration was comparable to those from the SB method: images were reconstructed without any loss of spatial resolution or severe distortions. In addition, MB and SB signal-to-noise ratios (SNR) were similar. A relative low g-factor induced from the MB acceleration method was achieved after using a blipped-CAIPI technique (1.35 for GE and 1.33 for SE imaging). Performing quantitative VAI, we found that, among all VAI parametric maps, microvessel type indicator (MTI), distance map (I) and vascular-induced bolus peak-time shift (VIPS) were highly correlated. Likewise, VAI parametric maps of slope, slope length and short axis were highly correlated. CONCLUSIONS: Multiband accelerated SAGE successfully doubles the number of readout slices in the same measurement time when compared to conventional readout sequences. The corresponding VAI parametric maps provide insights into the complexity and heterogeneity of vascular changes in glioma.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Imagem Ecoplanar , Imageamento Tridimensional , Marcadores de Spin , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA