Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(7): e1009795, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310662

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting cervids. Polymorphisms in the prion protein gene can result in extended survival of CWD-infected animals. However, the impact of polymorphisms on cellular prion protein (PrPC) and prion properties is less understood. Previously, we characterized the effects of a polymorphism at codon 116 (A>G) of the white-tailed deer (WTD) prion protein and determined that it destabilizes PrPC structure. Comparing CWD isolates from WTD expressing homozygous wild-type (116AA) or heterozygous (116AG) PrP, we found that 116AG-prions were conformationally less stable, more sensitive to proteases, with lower seeding activity in cell-free conversion and reduced infectivity. Here, we aimed to understand CWD strain emergence and adaptation. We show that the WTD-116AG isolate contains two different prion strains, distinguished by their host range, biochemical properties, and pathogenesis from WTD-116AA prions (Wisc-1). Serial passages of WTD-116AG prions in tg(CerPrP)1536+/+ mice overexpressing wild-type deer-PrPC revealed two populations of mice with short and long incubation periods, respectively, and remarkably prolonged clinical phase upon inoculation with WTD-116AG prions. Inoculation of serially diluted brain homogenates confirmed the presence of two strains in the 116AG isolate with distinct pathology in the brain. Interestingly, deglycosylation revealed proteinase K-resistant fragments with different electrophoretic mobility in both tg(CerPrP)1536+/+ mice and Syrian golden hamsters infected with WTD-116AG. Infection of tg60 mice expressing deer S96-PrP with 116AG, but not Wisc-1 prions induced clinical disease. On the contrary, bank voles resisted 116AG prions, but not Wisc-1 infection. Our data indicate that two strains co-existed in the WTD-116AG isolate, expanding the variety of CWD prion strains. We argue that the 116AG isolate does not contain Wisc-1 prions, indicating that the presence of 116G-PrPC diverted 116A-PrPC from adopting a Wisc-1 structure. This can have important implications for their possible distinct capacities to cross species barriers into both cervids and non-cervids.


Assuntos
Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Animais , Arvicolinae , Cricetinae , Cervos , Mesocricetus , Camundongos , Polimorfismo de Nucleotídeo Único , Doença de Emaciação Crônica/transmissão
2.
Emerg Infect Dis ; 23(9): 1598-1600, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820384

RESUMO

Human and mouse prion proteins share a structural motif that regulates resistance to common chronic wasting disease (CWD) prion strains. Successful transmission of an emergent strain of CWD prion, H95+, into mice resulted in infection. Thus, emergent CWD prion strains may have higher zoonotic potential than common strains.


Assuntos
Especificidade de Hospedeiro , Príons/química , Doença de Emaciação Crônica/transmissão , Animais , Cricetinae , Cervos , Humanos , Camundongos , Príons/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estabilidade Proteica , Especificidade da Espécie , Doença de Emaciação Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA