Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(39): e202307395, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37522562

RESUMO

Stability issues could prevent lead halide perovskite solar cells (PSCs) from commercialization despite it having a comparable power conversion efficiency (PCE) to silicon solar cells. Overcoming drawbacks affecting their long-term stability is gaining incremental importance. Excess lead iodide (PbI2 ) causes perovskite degradation, although it aids in crystal growth and defect passivation. Herein, we synthesized functionalized oxo-graphene nanosheets (Dec-oxoG NSs) to effectively manage the excess PbI2 . Dec-oxoG NSs provide anchoring sites to bind the excess PbI2 and passivate perovskite grain boundaries, thereby reducing charge recombination loss and significantly boosting the extraction of free electrons. The inclusion of Dec-oxoG NSs leads to a PCE of 23.7 % in inverted (p-i-n) PSCs. The devices retain 93.8 % of their initial efficiency after 1,000 hours of tracking at maximum power points under continuous one-sun illumination and exhibit high stability under thermal and ambient conditions.

2.
Gels ; 10(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38247742

RESUMO

This study explores the influence of temperature-time conditions, surfactants, and varied waste compositions on the curing of geopolymer gels, a foam formation with the properties of porous geopolymers. Findings reveal that a 6 h curing period leads to a density of 435 kg/m3 and strength of 0.66 MPa, with notable improvements at 12 h. Comparing 12 to 24 h curing, differences in characteristics remain within 5%, highlighting the 12 h period as more energy-efficient. Sodium stearate-based samples exhibit excellent properties, significantly boosting strength while maintaining overall properties. Microwave curing achieves the lowest density (291 kg/m3) and closely parallels properties of samples cured conventionally for 12 h. However, it leads to complete destruction in sodium stearate-modified gels due to the Dumas reaction, making it unsuitable above 200 °C. Optimal properties emerge from compositions using sodium stearate and oven curing, achieving densities of 334 kg/m3 and strengths of 1.08 MPa (Severodvinsk CHPP-1) and 373 kg/m3 and 1.17 MPa (Novocherkassk SDPP). Although microwave curing allows for high energy efficiency, its high temperature demands necessitate careful material selection. This study offers insight into enhancing geopolymer properties while emphasizing the importance of tailored curing methods for sustainable material development.

3.
Science ; 379(6630): 399-403, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701445

RESUMO

Daily temperature variations induce phase transitions and lattice strains in halide perovskites, challenging their stability in solar cells. We stabilized the perovskite black phase and improved solar cell performance using the ordered dipolar structure of ß-poly(1,1-difluoroethylene) to control perovskite film crystallization and energy alignment. We demonstrated p-i-n perovskite solar cells with a record power conversion efficiency of 24.6% over 18 square millimeters and 23.1% over 1 square centimeter, which retained 96 and 88% of the efficiency after 1000 hours of 1-sun maximum power point tracking at 25° and 75°C, respectively. Devices under rapid thermal cycling between -60° and +80°C showed no sign of fatigue, demonstrating the impact of the ordered dipolar structure on the operational stability of perovskite solar cells.

4.
Materials (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36614602

RESUMO

The regularities of obtaining foamed alkali-activated geopolymer materials based on different wastes of coal power engineering (fly ash, fuel (boiler) slag, ash, and slag mixture) were considered. The phase composition of the studied waste showed the presence of a significant amount of the amorphous phase, as well as a crystalline phase. mostly in the form of high quartz. The microstructure of studied the waste showed that the fly ash consisted of monodisperse hollow aluminosilicate microspheres, the fuel slag was represented by polydisperse irregular particles, and the ash and slag mixture included both of these materials in different ratios. Blowing agents such as aluminum powder, hydrogen peroxide, and sodium hypochlorite were chosen to achieve the porous structure of the geopolymer materials. The calculations of the geopolymer precursor compositions were carried out. Samples were synthesized, and their physical and mechanical properties, such as density, strength, porosity, and thermal conductivity, were analyzed. The micro- and macrostructure of the samples, as well as the pore distribution of the obtained geopolymers were studied. Conclusions were made on the choice of the most-optimal foaming agent and the optimal coal combustion waste suitable for the synthesis of the geopolymer materials.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35564222

RESUMO

Nitrogen-vacancy (NV) color centers in diamond are excellent quantum sensors possessing high sensitivity and nano-scale spatial resolution. Their integration in photonic structures is often desired, since it leads to an increased photon emission and also allows the realization of solid-state quantum technology architectures. Here, we report the fabrication of diamond nano-pillars with diameters up to 1000 nm by electron beam lithography and inductively coupled plasma reactive ion etching in nitrogen-rich diamonds (type Ib) with [100] and [111] crystal orientations. The NV centers were created by keV-He ion bombardment and subsequent annealing, and we estimate an average number of NVs per pillar to be 4300 ± 300 and 520 ± 120 for the [100] and [111] samples, respectively. Lifetime measurements of the NVs' excited state showed two time constants with average values of τ1 ≈ 2 ns and τ2 ≈ 8 ns, which are shorter as compared to a single color center in a bulk crystal (τ ≈ 10 ns). This is probably due to a coupling between the NVs as well as due to interaction with bombardment-induced defects and substitutional nitrogen (P1 centers). Optically detected magnetic resonance measurements revealed a contrast of about 5% and average coherence and relaxation times of T2 [100] = 420 ± 40 ns, T2 [111] = 560 ± 50 ns, and T1 [100] = 162 ± 11 µs, T1 [111] = 174 ± 24 µs. These pillars could find an application for scanning probe magnetic field imaging.

6.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407919

RESUMO

The possibility of improving the properties of porous geopolymer materials based on ash and slag waste from thermal power plants by adjusting their chemical composition is considered. An X-ray phase analysis of ash and slag wastes was carried out, the geopolymers' precursor compositions were calculated, and additives to correct their chemical composition were selected. The samples were synthesized and their physical and mechanical properties (density, porosity, compressive strength, thermal conductivity) were analyzed. The micro- and macro-structure of the samples and the pore distribution of the obtained geopolymers were studied and pore-distribution histograms were obtained. The influence of Si:Al ratio on structural changes was described. The geopolymers' phase composition was studied, consisting of an amorphous phase and high quartz and mullite. A conclusion about the applicability of this method for obtaining high-quality porous geopolymers was made.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA