Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(6): e1011117, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37319266

RESUMO

An object's colour, brightness and pattern are all influenced by its surroundings, and a number of visual phenomena and "illusions" have been discovered that highlight these often dramatic effects. Explanations for these phenomena range from low-level neural mechanisms to high-level processes that incorporate contextual information or prior knowledge. Importantly, few of these phenomena can currently be accounted for in quantitative models of colour appearance. Here we ask to what extent colour appearance is predicted by a model based on the principle of coding efficiency. The model assumes that the image is encoded by noisy spatio-chromatic filters at one octave separations, which are either circularly symmetrical or oriented. Each spatial band's lower threshold is set by the contrast sensitivity function, and the dynamic range of the band is a fixed multiple of this threshold, above which the response saturates. Filter outputs are then reweighted to give equal power in each channel for natural images. We demonstrate that the model fits human behavioural performance in psychophysics experiments, and also primate retinal ganglion responses. Next, we systematically test the model's ability to qualitatively predict over 50 brightness and colour phenomena, with almost complete success. This implies that much of colour appearance is potentially attributable to simple mechanisms evolved for efficient coding of natural images, and is a well-founded basis for modelling the vision of humans and other animals.


Assuntos
Percepção de Cores , Células Ganglionares da Retina , Animais , Humanos , Cor , Percepção de Cores/fisiologia , Células Ganglionares da Retina/fisiologia , Sensibilidades de Contraste , Psicofísica
2.
Proc Biol Sci ; 290(2000): 20230725, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312543

RESUMO

Encroachment of artificial light at night (ALAN) into natural habitats is increasingly recognized as a major source of anthropogenic disturbance. Research focussed on variation in the intensity and spectrum of ALAN emissions has established physiological, behavioural and population-level effects across plants and animals. However, little attention has been paid to the structural aspect of this light, nor how combined morphological and behavioural anti-predator adaptations are affected. We investigated how lighting structure, background reflectance and the three-dimensional properties of the environment combined to affect anti-predator defences in the marine isopod Ligia oceanica. Experimental trials monitored behavioural responses including movement and background choice, and also colour change, a widespread morphological anti-predator mechanism little considered in relation to ALAN exposure. We found that behavioural responses of isopods to ALAN were consistent with classic risk-aversion strategies, being particularly exaggerated under diffuse lighting. However, this behaviour was disconnected from optimal morphological strategies, as diffuse light caused isopods to become lighter coloured while seeking out darker backgrounds. Our work highlights the potential for the structure of natural and artificial light to play a key role in behavioural and morphological processes likely to affect anti-predator adaptations, survival, and ultimately wider ecological effects.


Assuntos
Isópodes , Animais , Poluição Luminosa , Aclimatação , Afeto , Efeitos Antropogênicos
3.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334657

RESUMO

Spectroradiometry is a vital tool in a wide range of biological, physical, astronomical and medical fields, yet its cost and accessibility are frequent barriers to use. Research into the effects of artificial light at night (ALAN) further compounds these difficulties with requirements for sensitivity to extremely low light levels across the ultraviolet to human-visible spectrum. Here, I present an open-source spectroradiometry (OSpRad) system that meets these design challenges. The system utilises an affordable miniature spectrometer chip (Hamamatsu C12880MA), combined with an automated shutter and cosine-corrector, microprocessor controller, and graphical user interface 'app' that can be used with smartphones or desktop computers. The system has high ultraviolet sensitivity and can measure spectral radiance at 0.001 cd m-2 and irradiance at 0.005 lx, covering the vast majority of real-world night-time light levels. The OSpRad system's low cost and high sensitivity make it well suited to a range of spectrometry and ALAN research.

4.
Biol Lett ; 19(2): 20220538, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789542

RESUMO

The persistence of imperfect mimicry in nature presents a challenge to mimicry theory. Some hypotheses for the existence of imperfect mimicry make differing predictions depending on how mimetic fidelity is measured. Here, we measure mimetic fidelity in a brood parasite-host system using both trait-based and response-based measures of mimetic fidelity. Cuckoo finches Anomalospiza imberbis lay imperfectly mimetic eggs that lack the fine scribbling characteristic of eggs of the tawny-flanked prinia Prinia subflava, a common host species. A trait-based discriminant analysis based on Minkowski functionals-that use geometric and topological morphometric methods related to egg pattern shape and coverage-reflects this consistent difference between host and parasite eggs. These methods could be applied to quantify other phenotypes including stripes and waved patterns. Furthermore, by painting scribbles onto cuckoo finch eggs and testing their rate of rejection compared to control eggs (i.e. a response-based approach to quantify mimetic fidelity), we show that prinias do not discriminate between eggs based on the absence of scribbles. Overall, our results support relaxed selection on cuckoo finches to mimic scribbles, since prinias do not respond differently to eggs with and without scribbles, despite the existence of this consistent trait difference.


Assuntos
Tentilhões , Parasitos , Pardais , Animais , Evolução Biológica , Comportamento de Nidação , Óvulo , Interações Hospedeiro-Parasita
5.
Proc Biol Sci ; 289(1976): 20220194, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642370

RESUMO

Eye gaze is an important source of information for animals, implicated in communication, cooperation, hunting and antipredator behaviour. Gaze perception and its cognitive underpinnings are much studied in primates, but the specific features that are used to estimate gaze can be difficult to isolate behaviourally. We photographed 13 laboratory-housed tufted capuchin monkeys (Sapajus [Cebus] apella) to quantify chromatic and achromatic contrasts between their iris, pupil, sclera and skin. We used colour vision models to quantify the degree to which capuchin eye gaze is discriminable to capuchins, their predators and their prey. We found that capuchins, regardless of their colour vision phenotype, as well as their predators, were capable of effectively discriminating capuchin gaze across ecologically relevant distances. Their prey, in contrast, were not capable of discriminating capuchin gaze, even under relatively ideal conditions. These results suggest that specific features of primate eyes can influence gaze perception, both within and across species.


Assuntos
Cebus , Fixação Ocular , Animais , Haplorrinos
6.
Mol Ecol ; 31(5): 1337-1357, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34170592

RESUMO

Parallel evolution, in which independent populations evolve along similar phenotypic trajectories, offers insights into the repeatability of adaptive evolution. Here, we revisit a classic example of parallelism, that of repeated evolution of brighter males in the Trinidadian guppy (Poecilia reticulata). In guppies, colonisation of low predation habitats is associated with emergence of 'more colourful' phenotypes since predator-induced viability selection for crypsis weakens while sexual selection by female preference for conspicuousness remains strong. Our study differs from previous investigations in three respects. First, we adopted a multivariate phenotyping approach to characterise parallelism in multitrait space. Second, we used ecologically-relevant colour traits defined by the visual systems of the two selective agents (i.e., guppy, predatory cichlid). Third, we estimated population genetic structure to test for adaptive (parallel) evolution against a model of neutral phenotypic divergence. We find strong phenotypic differentiation that is inconsistent with a neutral model but very limited support for the predicted pattern of greater conspicuousness at low predation. Effects of predation regime on each trait were in the expected direction, but weak, largely nonsignificant, and explained little among-population variation. In multitrait space, phenotypic trajectories of lineages colonising low from high predation regimes were not parallel. Our results are consistent with reduced predation risk facilitating adaptive differentiation, potentially by female choice, but suggest that this proceeds in independent directions of multitrait space across lineages. Pool-sequencing data also revealed SNPs showing greater differentiation than expected under neutrality, among which some are found in genes contributing to colour pattern variation, presenting opportunities for future genetic study.


Assuntos
Poecilia , Animais , Evolução Biológica , Cor , Feminino , Masculino , Fenótipo , Poecilia/genética , Comportamento Predatório
7.
Anim Cogn ; 25(4): 991-1002, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35778546

RESUMO

Egg rejection is a crucial defence strategy against brood parasitism that requires the host to correctly recognise the foreign egg. Rejection behaviour has, thus, evolved in many hosts, facilitated by the visual differences between the parasitic and host eggs, and driving hosts to rely on colour and pattern cues. On the other hand, the need to recognise non-egg-shaped objects to carry out nest sanitation led birds to evolve the ability to discriminate and eject objects using mainly shape cues. However, little is known regarding the evolutionary significance of rejection behaviour in general and the cognitive processes underlying it. Here, we investigated the response of the barn swallow (Hirundo rustica) during pre-laying and laying stages to four objects types that differed in shape (eggs vs stars) and colour/pattern (mimetic vs non-mimetic) to investigate (1) what cognitive mechanisms are involved in object discrimination and (2) whether egg rejection is a direct defence against brood parasitism, or simply a product of nest sanitation. We found that swallows ejected stars more often than eggs in both stages, indicating that swallows possess a template for the shape of their eggs. Since the effect of colour/pattern on ejection decisions was minor, we suggest that barn swallows have not evolved a direct defence against brood parasitism but instead, egg ejection might be a product of their well-developed nest sanitation behaviour. Nonetheless, the fact that mimetic eggs were ejected especially in the pre-laying stage shows that nest sanitation could be an effective defence against poorly timed brood parasitism.


Assuntos
Comportamento de Nidação , Saneamento , Animais , Evolução Biológica , Aves , Sinais (Psicologia) , Interações Hospedeiro-Parasita/fisiologia , Comportamento de Nidação/fisiologia , Óvulo
8.
Proc Biol Sci ; 288(1942): 20202823, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434457

RESUMO

The motion dazzle hypothesis posits that high contrast geometric patterns can cause difficulties in tracking a moving target and has been argued to explain the patterning of animals such as zebras. Research to date has only tested a small number of patterns, offering equivocal support for the hypothesis. Here, we take a genetic programming approach to allow patterns to evolve based on their fitness (time taken to capture) and thus find the optimal strategy for providing protection when moving. Our 'Dazzle Bug' citizen science game tested over 1.5 million targets in a touch screen game at a popular visitor attraction. Surprisingly, we found that targets lost pattern elements during evolution and became closely background matching. Modelling results suggested that targets with lower motion energy were harder to catch. Our results indicate that low contrast, featureless targets offer the greatest protection against capture when in motion, challenging the motion dazzle hypothesis.


Assuntos
Ciência do Cidadão , Percepção de Movimento , Animais , Movimento (Física) , Movimento
9.
Proc Biol Sci ; 288(1959): 20211805, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34547904

RESUMO

The sun is the most reliable celestial cue for orientation available to daytime migrants. It is widely assumed that diurnal migratory insects use a 'time-compensated sun compass' to adjust for the changing position of the sun throughout the day, as demonstrated in some butterfly species. The mechanisms used by other groups of diurnal insect migrants remain to be elucidated. Migratory species of hoverflies (Diptera: Syrphidae) are one of the most abundant and beneficial groups of diurnal migrants, providing multiple ecosystem services and undergoing directed seasonal movements throughout much of the temperate zone. To identify the hoverfly navigational strategy, a flight simulator was used to measure orientation responses of the hoverflies Scaeva pyrastri and Scaeva selenitica to celestial cues during their autumn migration. Hoverflies oriented southwards when they could see the sun and shifted this orientation westward following a 6 h advance of their circadian clocks. Our results demonstrate the use of a time-compensated sun compass as the primary navigational mechanism, consistent with field observations that hoverfly migration occurs predominately under clear and sunny conditions.


Assuntos
Migração Animal , Orientação , Animais , Sinais (Psicologia) , Ecossistema , Estações do Ano , Luz Solar
10.
PLoS Biol ; 16(11): e2006962, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30457985

RESUMO

Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group-the birds-of-paradise-exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the tradeoff between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit-the "courtship phenotype." Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness-functional overlap and interdependency-promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations.


Assuntos
Preferência de Acasalamento Animal/fisiologia , Passeriformes/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Evolução Biológica , Aves/genética , Aves/fisiologia , Corte , Feminino , Masculino , Passeriformes/genética , Fenótipo , Filogenia , Seleção Genética , Caracteres Sexuais
11.
Am Nat ; 196(5): 597-608, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064581

RESUMO

AbstractSexually selected ornaments range from highly dynamic traits to those that are fixed during development and relatively static throughout sexual maturity. Ornaments along this continuum differ in the information they provide about the qualities of potential mates, such as their parasite resistance. Dynamic ornaments enable real-time assessment of the bearer's condition: they can reflect an individual's current infection status, or they can reflect resistance to recent infections. Static ornaments, however, are not affected by recent infection but may instead indicate an individual's genetically determined resistance, even in the absence of infection. Given the typically aggregated distribution of parasites among hosts, infection is unlikely to affect the ornaments of the vast majority of individuals in a population: static ornaments may therefore be the more reliable indicators of parasite resistance. To test this hypothesis, we quantified the ornaments of male guppies (Poecilia reticulata) before experimentally infecting them with Gyrodactylus turnbulli. Males with more left-right symmetrical black coloration and those with larger areas of orange coloration, both static ornaments, were more resistant. However, males with more saturated orange coloration, a dynamic ornament, were less resistant. Female guppies often prefer symmetrical males with larger orange ornaments, suggesting that parasite-mediated natural and sexual selection act in concert on these traits.


Assuntos
Cor , Poecilia/anatomia & histologia , Poecilia/parasitologia , Animais , Masculino , Platelmintos , Caracteres Sexuais
12.
Proc Biol Sci ; 285(1886)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185636

RESUMO

Numerous animals rely on camouflage for defence. Substantial past work has identified the presence of multiple strategies for concealment, and tested the mechanisms underpinning how they work. These include background matching, D-RUP coloration to destroy target edges, and distractive markings that may divert attention from key target features. Despite considerable progress, work has focused on how camouflage types prevent initial detection by naive observers. However, predators will often encounter multiple targets over time, providing the opportunity to learn or focus attention through search images. At present, we know almost nothing about how camouflage types facilitate or hinder predator performance over repeated encounters. Here, we use experiments with human subjects searching for targets on touch screens with different camouflage strategies, and control the experience that subjects have with target types. We show that different camouflage strategies affect how subjects improve in detecting targets with repeated encounters, and how performance in detection of one camouflage type depends on experience of other strategies. In particular, disruptive coloration is effective at preventing improvements in camouflage breaking during search image formation, and experience with one camouflage type (distraction) can decrease the ability of subjects to switch to and from search images for new camouflage types (disruption). Our study is, to our knowledge, the first to show how the success of camouflage strategies depends on how they prevent initial and successive detection, and on predator experience of other strategies. This has implications for the evolution of prey phenotypes, how we assess the efficacy of defences, and predator-prey dynamics.


Assuntos
Cor , Pigmentação , Comportamento Predatório , Percepção Visual , Animais , Evolução Biológica , Cadeia Alimentar , Humanos , Fenótipo
13.
BMC Evol Biol ; 17(1): 7, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28056761

RESUMO

BACKGROUND: Quantifying the conspicuousness of objects against particular backgrounds is key to understanding the evolution and adaptive value of animal coloration, and in designing effective camouflage. Quantifying detectability can reveal how colour patterns affect survival, how animals' appearances influence habitat preferences, and how receiver visual systems work. Advances in calibrated digital imaging are enabling the capture of objective visual information, but it remains unclear which methods are best for measuring detectability. Numerous descriptions and models of appearance have been used to infer the detectability of animals, but these models are rarely empirically validated or directly compared to one another. We compared the performance of human 'predators' to a bank of contemporary methods for quantifying the appearance of camouflaged prey. Background matching was assessed using several established methods, including sophisticated feature-based pattern analysis, granularity approaches and a range of luminance and contrast difference measures. Disruptive coloration is a further camouflage strategy where high contrast patterns disrupt they prey's tell-tale outline, making it more difficult to detect. Disruptive camouflage has been studied intensely over the past decade, yet defining and measuring it have proven far more problematic. We assessed how well existing disruptive coloration measures predicted capture times. Additionally, we developed a new method for measuring edge disruption based on an understanding of sensory processing and the way in which false edges are thought to interfere with animal outlines. RESULTS: Our novel measure of disruptive coloration was the best predictor of capture times overall, highlighting the importance of false edges in concealment over and above pattern or luminance matching. CONCLUSIONS: The efficacy of our new method for measuring disruptive camouflage together with its biological plausibility and computational efficiency represents a substantial advance in our understanding of the measurement, mechanism and definition of disruptive camouflage. Our study also provides the first test of the efficacy of many established methods for quantifying how conspicuous animals are against particular backgrounds. The validation of these methods opens up new lines of investigation surrounding the form and function of different types of camouflage, and may apply more broadly to the evolution of any visual signal.


Assuntos
Mimetismo Biológico , Modelos Biológicos , Pigmentação , Animais , Evolução Biológica , Simulação por Computador , Cadeia Alimentar , Comportamento Predatório , Visão Ocular
14.
Am Nat ; 187(3): 351-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26913947

RESUMO

Bird eggs show striking diversity in color and pattern. One explanation for this is that interactions between avian brood parasites and their hosts drive egg phenotype evolution. Brood parasites lay their eggs in the nests of other species, their hosts. Many hosts defend their nests against parasitism by rejecting foreign eggs, which selects for parasite eggs that mimic those of the host. In theory, this may in turn select for changes in host egg phenotypes over time to facilitate discrimination of parasite eggs. Here, we test for the first time whether parasitism by brood parasites has led to increased divergence in egg phenotype among host species. Using Australian host and nonhost species and objective measures of egg color and pattern, we show that (i) hosts of brood parasites have higher within-species variation in egg pattern than nonhosts, supporting previous findings in other systems, and (ii) host species have diverged more in their egg patterns than nonhost species after controlling for divergence time. Overall, our results suggest that brood parasitism has played a significant role in the evolution of egg diversity and that these effects are evident, not only within species, but also among species.


Assuntos
Aves/fisiologia , Aves/parasitologia , Interações Hospedeiro-Parasita , Comportamento de Nidação , Animais , Austrália , Cor , Óvulo/fisiologia , Passeriformes/parasitologia , Passeriformes/fisiologia , Fenótipo , Pigmentação
15.
Am Nat ; 188(2): 231-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27420787

RESUMO

Camouflage is one of the most widespread antipredator strategies in the animal kingdom, yet no animal can match its background perfectly in a complex environment. Therefore, selection should favor individuals that use information on how effective their camouflage is in their immediate habitat when responding to an approaching threat. In a field study of African ground-nesting birds (plovers, coursers, and nightjars), we tested the hypothesis that individuals adaptively modulate their escape behavior in relation to their degree of background matching. We used digital imaging and models of predator vision to quantify differences in color, luminance, and pattern between eggs and their background, as well as the plumage of incubating adult nightjars. We found that plovers and coursers showed greater escape distances when their eggs were a poorer pattern match to the background. Nightjars sit on their eggs until a potential threat is nearby, and, correspondingly, they showed greater escape distances when the pattern and color match of the incubating adult's plumage-rather than its eggs-was a poorer match to the background. Finally, escape distances were shorter in the middle of the day, suggesting that escape behavior is mediated by both camouflage and thermoregulation.


Assuntos
Charadriiformes/fisiologia , Comportamento de Nidação , Comportamento Predatório , Estrigiformes/fisiologia , Adaptação Fisiológica , Animais , Cor , Ecossistema , Plumas , Óvulo , Percepção Visual , Zâmbia
16.
Biol Lett ; 11(12): 20150777, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26701755

RESUMO

New Caledonian crows are renowned for their unusually sophisticated tool behaviour. Despite decades of fieldwork, however, very little is known about how they make and use their foraging tools in the wild, which is largely owing to the difficulties in observing these shy forest birds. To obtain first estimates of activity budgets, as well as close-up observations of tool-assisted foraging, we equipped 19 wild crows with self-developed miniature video cameras, yielding more than 10 h of analysable video footage for 10 subjects. While only four crows used tools during recording sessions, they did so extensively: across all 10 birds, we conservatively estimate that tool-related behaviour occurred in 3% of total observation time, and accounted for 19% of all foraging behaviour. Our video-loggers provided first footage of crows manufacturing, and using, one of their most complex tool types--hooked stick tools--under completely natural foraging conditions. We recorded manufacture from live branches of paperbark (Melaleuca sp.) and another tree species (thought to be Acacia spirorbis), and deployment of tools in a range of contexts, including on the forest floor. Taken together, our video recordings reveal an 'expanded' foraging niche for hooked stick tools, and highlight more generally how crows routinely switch between tool- and bill-assisted foraging.


Assuntos
Comportamento Apetitivo , Corvos/fisiologia , Comportamento de Utilização de Ferramentas , Acacia , Animais , Comportamento Alimentar , Melaleuca , Nova Caledônia , Gravação em Vídeo
17.
Biol Lett ; 11(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26268993

RESUMO

Camouflage is perhaps the most widespread anti-predator strategy in nature, found in numerous animal groups. A long-standing prediction is that individuals should have camouflage tuned to the visual backgrounds where they live. However, while several studies have demonstrated phenotype-environment associations, few have directly shown that this confers an improvement in camouflage, particularly with respect to predator vision. Here, we show that an intertidal crustacean, the sand flea (Hippa testudinaria), has coloration tuned to the different substrates on which it occurs when viewed by potential avian predators. Individual sand fleas from a small, oceanic island (Ascension) matched the colour and luminance of their own beaches more closely than neighbouring beaches to a model of avian vision. Based on past work, this phenotype-environment matching is likely to be driven through ontogenetic changes rather than genetic adaptation. Our work provides some of the first direct evidence that animal coloration is tuned to provide camouflage to prospective predators against a range of visual backgrounds, in a population of animals occurring over a small geographical range.


Assuntos
Decápodes/fisiologia , Pigmentação , Animais , Ilhas Atlânticas , Aves/fisiologia , Percepção de Cores , Ecossistema , Fenótipo , Comportamento Predatório
18.
BMC Evol Biol ; 14: 201, 2014 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25213150

RESUMO

BACKGROUND: Stripes and other high contrast patterns found on animals have been hypothesised to cause "motion dazzle", a type of defensive coloration that operates when in motion, causing predators to misjudge the speed and direction of object movement. Several recent studies have found some support for this idea, but little is currently understood about the mechanisms underlying this effect. Using humans as model 'predators' in a touch screen experiment we investigated further the effectiveness of striped targets in preventing capture, and considered how stripes compare to other types of patterning in order to understand what aspects of target patterning are important in making a target difficult to capture. RESULTS: We find that striped targets are among the most difficult to capture, but that other patterning types are also highly effective at preventing capture in this task. Several target types, including background sampled targets and targets with a 'spot' on were significantly easier to capture than striped targets. We also show differences in capture attempt rates between different target types, but we find no differences in learning rates between target types. CONCLUSIONS: We conclude that striped targets are effective in preventing capture, but are not uniquely difficult to catch, with luminance matched grey targets also showing a similar capture rate. We show that key factors in making capture easier are a lack of average background luminance matching and having trackable 'features' on the target body. We also find that striped patterns are attempted relatively quickly, despite being difficult to catch. We discuss these findings in relation to the motion dazzle hypothesis and how capture rates may be affected more generally by pattern type.


Assuntos
Simulação por Computador , Movimento (Física) , Comportamento Predatório , Percepção Visual , Animais , Cor , Humanos , Aprendizagem , Modelos Biológicos
19.
PLoS One ; 19(5): e0295106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753609

RESUMO

Camouflage is a widespread and well-studied anti-predator strategy, yet identifying which patterns provide optimal protection in any given scenario remains challenging. Besides the virtually limitless combinations of colours and patterns available to prey, selection for camouflage strategies will depend on complex interactions between prey appearance, background properties and predator traits, across repeated encounters between co-evolving predators and prey. Experiments in artificial evolution, pairing psychophysics detection tasks with genetic algorithms, offer a promising way to tackle this complexity, but sophisticated genetic algorithms have so far been restricted to screen-based experiments. Here, we present methods to test the evolution of colour patterns on physical prey items, under selection from wild predators in the field. Our techniques expand on a recently-developed open-access pattern generation and genetic algorithm framework, modified to operate alongside artificial predation experiments. In this system, predators freely interact with prey, and the order of attack determines the survival and reproduction of prey patterns into future generations. We demonstrate the feasibility of these methods with a case study, in which free-flying birds feed on artificial prey deployed in semi-natural conditions, against backgrounds differing in three-dimensional complexity. Wild predators reliably participated in this experiment, foraging for 11 to 16 generations of artificial prey and encountering a total of 1,296 evolved prey items. Changes in prey pattern across generations indicated improvements in several metrics of similarity to the background, and greater edge disruption, although effect sizes were relatively small. Computer-based replicates of these trials, with human volunteers, highlighted the importance of starting population parameters for subsequent evolution, a key consideration when applying these methods. Ultimately, these methods provide pathways for integrating complex genetic algorithms into more naturalistic predation trials. Customisable open-access tools should facilitate application of these tools to investigate a wide range of visual pattern types in more ecologically-relevant contexts.


Assuntos
Algoritmos , Evolução Biológica , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Aves/fisiologia , Seleção Genética
20.
Commun Biol ; 6(1): 131, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721045

RESUMO

Fear influences almost all aspects of a prey species' behaviour, such as its foraging and movement, and has the potential to cause trophic cascades. The superior low-light vision of many predators means that perceived predation risk in prey is likely to be affected by light levels. The widespread and increasing intensity of artificial light at night is therefore likely to interfere with this nocturnal visual arms race with unknown behavioural and ecological consequences. Here we test how the fear of predation perceived by wintering Eurasian curlew foraging on tidal flats is influenced by lighting. We quantified flight initiation distance (FID) of individuals under varying levels of natural and artificial illumination. Our results demonstrate that FID is significantly and substantially reduced at low light levels and increases under higher intensity illumination, with artificial light sources having a greater influence than natural sources. Contrary to the sensory-limitation hypothesis, the curlews' unwillingness to take flight in low-light appears to reflect the risks posed by low-light flight, and a desire to remain on valuable foraging grounds. These findings demonstrate how artificial light can shape the landscape of fear, and how this interacts with optimal foraging decisions, and the costs of taking flight.


Assuntos
Charadriiformes , Iluminação , Animais , Cognição , Medo , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA