Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Immunol ; 196(2): 803-12, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26685206

RESUMO

The cytokine IL-17A has been shown to play critical roles in host defense against bacterial and fungal infections at different epithelial sites, but its role in the defense of the mammary gland (MG) has seldom been investigated, although infections of the MG constitute the main pathology afflicting dairy cows. In this study, we showed that IL-17A contributes to the defense of the MG against Escherichia coli infection by using a mouse mastitis model. After inoculation of the MG with a mastitis-causing E. coli strain, the bacterial load increased rapidly, triggering an intense influx of leukocytes into mammary tissue and increased concentrations of IL-6, IL-22, TNF-α, and IL-10. Neutrophils were the first cells that migrated intensely to the mammary tissue, in line with an early production of CXCL2. Depletion of neutrophils induced an increased mammary bacterial load. There was a significant increase of IL-17-containing CD4(+) αß T lymphocyte numbers in infected glands. Depletion of IL-17A correlated with an increased bacterial colonization and IL-10 production. Intramammary infusion of IL-17A at the onset of infection was associated with markedly decreased bacterial numbers, decreased IL-10 production, and increased neutrophil recruitment. Depletion of CD25(+) regulatory T cells correlated with a decreased production of IL-10 and a reduced bacterial load. These results indicate that IL-17A is an important effector of MG immunity to E. coli and suggest that an early increased local production of IL-17A would improve the outcome of infection. These findings point to a new lead to the development of vaccines against mastitis.


Assuntos
Infecções por Escherichia coli/imunologia , Interleucina-17/imunologia , Mastite/imunologia , Animais , Citocinas/análise , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Glândulas Mamárias Animais/imunologia , Camundongos , Camundongos Endogâmicos C57BL
2.
BMC Vet Res ; 12(1): 140, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27417195

RESUMO

BACKGROUND: Locomotor disorders and infections by Escherichia coli represent major concerns to the poultry industry worldwide. Avian pathogenic E. coli (APEC) is associated with extraintestinal infections leading to respiratory or systemic disease known as colibacillosis. The most common lesions seen in cases of colibacillosis are perihepatitis, airsacculitis, pericarditis, peritonitis/salpingitis and arthritis. These diseases are responsible for significant economic losses in the poultry industry worldwide. E. coli has been recently isolated from vertebral osteomyelitis cases in Brazil and there are no data on molecular and phenotypic characteristics of E. coli strains isolated from lesions in the locomotor system of broilers. This raised the question whether specific E. coli strains could be responsible for bone lesions in broilers. The aim of this study was to assess these characteristics of E. coli strains isolated from broilers presenting vertebral osteomyelitis and arthritis in Brazil. RESULTS: Fifteen E. coli strains from bone lesions were submitted to APEC diagnosis and setting of ECOR phylogenic group, O serogroup, flagella type, virulence genes content, genetic patterns by Pulsed Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST). In addition, bacterial isolates were further characterized through a lethality test, serum resistance test and antibiotic resistance profile. E. coli strains harbored different genetic pattern as assessed by PFGE, regardless of flock origin and lesion site. The strains belonged to seven sequence types (STs) previously described (ST117, ST101, ST131, ST 371 and ST3107) or newly described in this study (ST5766 and ST5856). ECOR group D (66.7 %) was the most frequently detected. The strains belonged to diverse serogroups (O88, O25, O12, and O45), some of worldwide importance. The antibiotic resistance profile confirmed strains' diversity and revealed a high proportion of multidrug-resistant strains (73 %), mainly to quinolones and beta-lactams, including third generation cephalosporin. The percentage of resistance to tetracycline was moderate (33 %) but always associated with multidrug resistance. CONCLUSIONS: Our results demonstrated that vertebral osteomyelitis and arthritis in broilers can be associated with highly diverse E. coli based on molecular and phenotypic characteristics. There was no specific virulence patterns of the E. coli strains associated with vertebral osteomyelitis or arthritis. Also, E. coli strains were frequently multidrug resistant and belonged to STs commonly shared by APEC and human ExPEC strains.


Assuntos
Artrite/veterinária , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Variação Genética , Osteomielite/veterinária , Doenças das Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Artrite/microbiologia , Brasil , Galinhas , Escherichia coli/classificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Osteomielite/microbiologia , Fatores de Virulência/genética
3.
Microbiol Spectr ; 11(3): e0429622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140373

RESUMO

The increase in antibiotic-resistant avian-pathogenic Escherichia coli (APEC), the causative agent of colibacillosis in poultry, warrants urgent research and the development of alternative therapies. This study describes the isolation and characterization of 19 genetically diverse, lytic coliphages, 8 of which were tested in combination for their efficacy in controlling in ovo APEC infections. Genome homology analysis revealed that the phages belong to nine different genera, one of them being a novel genus (Nouzillyvirus). One phage, REC, was derived from a recombination event between two Phapecoctavirus phages (ESCO5 and ESCO37) isolated in this study. Twenty-six of the 30 APEC strains tested were lysed by at least one phage. Phages exhibited varying infectious capacities, with narrow to broad host ranges. The broad host range of some phages could be partially explained by the presence of receptor-binding protein carrying a polysaccharidase domain. To demonstrate their therapeutic potential, a phage cocktail consisting of eight phages belonging to eight different genera was tested against BEN4358, an APEC O2 strain. In vitro, this phage cocktail fully inhibited the growth of BEN4358. In a chicken lethality embryo assay, the phage cocktail enabled 90% of phage-treated embryos to survive infection with BEN4358, compared with 0% of nontreated embryos, indicating that these novel phages are good candidates to successfully treat colibacillosis in poultry. IMPORTANCE Colibacillosis, the most common bacterial disease affecting poultry, is mainly treated by antibiotics. Due to the increased prevalence of multidrug-resistant avian-pathogenic Escherichia coli, there is an urgent need to assess the efficacy of alternatives to antibiotherapy, such as phage therapy. Here, we have isolated and characterized 19 coliphages that belong to nine phage genera. We showed that a combination of 8 of these phages was efficacious in vitro to control the growth of a clinical isolate of E. coli. Used in ovo, this phage combination allowed embryos to survive APEC infection. Thus, this phage combination represents a promising treatment for avian colibacillosis.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Bacteriófagos/genética , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Colífagos/genética , Galinhas , Aves Domésticas , Doenças das Aves Domésticas/terapia , Doenças das Aves Domésticas/microbiologia
4.
mSphere ; 8(2): e0049522, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36794931

RESUMO

Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.


Assuntos
Anti-Infecciosos , Doenças das Aves Domésticas , Animais , Aves Domésticas , Galinhas , Estudo de Associação Genômica Ampla , Filogenia
5.
Vet Res ; 43: 14, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22330199

RESUMO

Escherichia coli is a frequent cause of clinical mastitis in dairy cows. It has been shown that a prompt response of the mammary gland after E. coli entry into the lumen of the gland is required to control the infection, which means that the early detection of bacteria is of prime importance. Yet, apart from lipopolysaccharide (LPS), little is known of the bacterial components which are detected by the mammary innate immune system. We investigated the repertoire of potential bacterial agonists sensed by the udder and bovine mammary epithelial cells (bMEC) during E. coli mastitis by using purified or synthetic molecular surrogates of bacterial agonists of identified pattern-recognition receptors (PRRs). The production of CXCL8 and the influx of leucocytes in milk were the readouts of reactivity of stimulated cultured bMEC and challenged udders, respectively. Quantitative PCR revealed that bMEC in culture expressed the nucleotide oligomerization domain receptors NOD1 and NOD2, along with the Toll-like receptors TLR1, TLR2, TLR4, and TLR6, but hardly TLR5. In line with expression data, bMEC proved to react to the cognate agonists C12-iE-DAP (NOD1), Pam3CSK4 (TLR1/2), Pam2CSK4 (TLR2/6), pure LPS (TLR4), but not to flagellin (TLR5). As the udder reactivity to NOD1 and TLR5 agonists has never been reported, we tested whether the mammary gland reacted to intramammary infusion of C12-iE-DAP or flagellin. The udder reacted to C12-iE-DAP, but not to flagellin, in line with the reactivity of bMEC. These results extend our knowledge of the reactivity of the bovine mammary gland to bacterial agonists of the innate immune system, and suggest that E. coli can be recognized by several PRRs including NOD1, but unexpectedly not by TLR5. The way the mammary gland senses E. coli is likely to shape the innate immune response and finally the outcome of E. coli mastitis.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Células Epiteliais/imunologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Glândulas Mamárias Animais/imunologia , Mastite Bovina/imunologia , Receptores Toll-Like/genética , Animais , Proteínas Adaptadoras de Sinalização CARD/agonistas , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Bovinos , Células Cultivadas , Células Epiteliais/microbiologia , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Imunidade Inata , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Reação em Cadeia da Polimerase/veterinária , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
6.
Sci Rep ; 11(1): 5382, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686106

RESUMO

Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is among the most important plant diseases worldwide, severely affecting a high number of crops and ornamental plants in tropical regions. Only a limited number of phages infecting R. solanacearum have been isolated over the years, despite the importance of this bacterium and the associated plant disease. The antibacterial effect or morphological traits of these R. solanacearum viruses have been well studied, but not their genomic features, which need deeper consideration. This study reports the full genome of 23 new phages infecting RSSC isolated from agricultural samples collected in Mauritius and Reunion islands, particularly affected by this plant bacterial pathogen and considered biodiversity hotspots in the Southwest Indian Ocean. The complete genomic information and phylogenetic classification is provided, revealing high genetic diversity between them and weak similarities with previous related phages. The results support our proposal of 13 new species and seven new genera of R. solanacearum phages. Our findings highlight the wide prevalence of phages of RSSC in infected agricultural settings and the underlying genetic diversity. Discoveries of this kind lead more insight into the diversity of phages in general and to optimizing their use as biocontrol agents of bacterial diseases of plants in agriculture.


Assuntos
Bacteriófagos/genética , Variação Genética , Genoma Bacteriano , Doenças das Plantas/microbiologia , Ralstonia solanacearum , Ralstonia solanacearum/genética , Ralstonia solanacearum/isolamento & purificação , Ralstonia solanacearum/virologia , Reunião
7.
Int J Antimicrob Agents ; 55(6): 105936, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32156619

RESUMO

The objective of the study was to identify the genetic determinants and characteristics of expanded-spectrum cephalosporin (ESC) resistance in commensal Escherichia coli from healthy horses in France in 2015. Faecal samples from 744 adult horses were screened for ESC-resistant E. coli isolates. The extended-spectrum beta-lactamase (ESBL)/AmpC resistance genes were identified using polymerase chain reaction (PCR) and sequencing. ESC phenotypes were horizontally transferred by conjugation or transformation. Plasmids carrying ESBL/AmpC genes were typed by PCR-based replicon typing, restriction fragment length polymorphism (RFLP), and plasmid multilocus sequence typing (pMLST). The ESC-resistant E. coli isolates were typed by XbaI macrorestriction analysis. Sixteen of 41 stables harboured at least one horse carrying ESC-resistant E. coli. The proportion of individually tested horses carrying ESC-resistant E. coli was 8.5% (28/328). Fifty non-redundant ESC-resistant E. coli isolates showing a great diversity of XbaI macrorestriction profiles belonged mainly to phylogroup B1, and were negative for major E. coli virulence genes, indicating they are commensal isolates. ESBL blaCTX-M genes were dominant (blaCTX-M-1, n=34; blaCTX-M-2, n=8; blaCTX-M-14, n=2) and located on conjugative plasmids belonging to various incompatibility groups (IncHI1, IncI1, IncN, IncY, or non-typeable). Among these, the multidrug-resistant IncHI1-pST9 plasmids were dominant and simultaneously harboured the blaCTX-M-1/2 genes and an operon enabling the metabolism of short-chain fructo-oligosaccharides (scFOS). In conclusion, commensal E. coli of French horses displayed a significant distribution of IncHI1-pST9 plasmids carrying both the blaCTX-M-1/2 gene and the fos metabolism operon. This finding highlights the risk of co-selection of multidrug-resistant IncHI1 plasmids carrying ESBL genes possibly mediated by the use of scFOS as prebiotic in horses.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Cavalos/microbiologia , Oligossacarídeos/metabolismo , Plasmídeos/genética , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Conjugação Genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Fezes/microbiologia , França/epidemiologia , Tipagem de Sequências Multilocus , Óperon , Filogenia , Prebióticos/microbiologia
8.
Methods Mol Biol ; 1898: 199-205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30570735

RESUMO

To combat infectious diseases induced by antibiotic-resistant bacteria in human and animals, phage therapy has regained attention by the scientific community. Before phages can be widely accepted as therapeutics in the same way as antibiotics, convincing detailed applied experimental evidence must be available. The embryonated chicken egg model has been used to study the virulence of many pathogens. We describe here a procedure to test the efficacy of phage therapy to treat colibacillosis using a chicken embryo lethality assay, this being potentially applied to others bacterial infection.


Assuntos
Bacteriófagos/patogenicidade , Infecções por Escherichia coli/terapia , Terapia por Fagos/métodos , Doenças das Aves Domésticas/terapia , Animais , Bacteriófagos/genética , Embrião de Galinha , Escherichia coli/patogenicidade , Escherichia coli/virologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/virologia , Humanos , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/virologia
9.
Front Microbiol ; 10: 541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972041

RESUMO

Defensins are natural antimicrobial peptides. The avian beta-defensin AvBD7 isolated from the chicken bone marrow possess broad antibacterial spectrum and strong resistance to proteolysis. However, its ability to fight systemic infections of major concern for public health, such as salmonellosis, is unknown. As a first approach, fluorescence labeling of AvBD7 allowed to track its systemic distribution after intraperitoneal injection in mice using whole body live imaging. It was associated to peritoneal cells and to deeper organs such as the liver. In the next step, the use of labeled AvBD7 allowed to observe its interaction with murine macrophages in culture. After incubation, it was able to penetrate inside the cells through an endocytosis-like mechanism. Furthermore, natural AvBD7 contributed to the control of intracellular multiplication of a multidrug resistant Salmonella strain, after incubation with infected macrophages. Finally, administration in a model of systemic lethal Salmonella infection in mice led to significant improvement of mouse survival, consistently with significant reduction of the liver bacterial load. In conclusion, the results reveal a hitherto unknown intracellular antibacterial effect of AvBD7 in Salmonella target cells and support AvBD7 as a candidate of interest for the treatment of infectious diseases caused by multidrug-resistant pathogenic Enterobacteriaceae.

10.
Dev Comp Immunol ; 86: 156-170, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729283

RESUMO

Mammalian type I interferons (IFNα/ß) are known to modulate inflammatory processes in addition to their antiviral properties. Indeed, virus-induced type I interferons regulate the mammalian phagocyte immune response to bacteria during superinfections. However, it remains unresolved whether type I IFNs similarly impact the chicken macrophage immune response. We first evidenced that IFNα and IFNß act differently in terms of gene expression stimulation and activation of intracellular signaling pathways in chicken macrophages. Next, we showed that priming of chicken macrophages with IFNα increased bacteria uptake, boosted bacterial-induced ROS/NO production and led to an increased transcriptional expression or production of NOS2/NO, IL1B/IL-1ß and notably IFNB/IFNß. Neutralization of IFNß during bacterial challenge limited IFNα-induced augmentation of the pro-inflammatory response. In conclusion, we demonstrated that type I IFNs differently regulate chicken macrophage functions and drive a pro-inflammatory response to bacterial challenge. These findings shed light on the diverse functions of type I IFNs in chicken macrophages.


Assuntos
Bactérias/imunologia , Galinhas/imunologia , Inflamação/imunologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Macrófagos/imunologia , Animais , Galinhas/microbiologia , Expressão Gênica/imunologia , Inflamação/microbiologia , Macrófagos/microbiologia , Óxidos de Nitrogênio/imunologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA