Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 62(5): 1011-1016, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38018456

RESUMO

OBJECTIVES: Thermostability is one of the pre-requisites for the reliability of analytes in clinical practice and biomedical research. Although presepsin represents a promising new biomarker for the early diagnosis of sepsis in newborns, data on its stability under different storage conditions are lacking. We aimed to investigate presepsin thermostability in blood, urine and saliva samples after thawing at 4 predetermined monitoring time-points in a cohort of preterm and term infants. METHODS: We conducted an observational study, where each case served as its own control, in 24 preterm and term infants. Blood, urine and saliva samples were stored at -80 °C for 18 months, and presepsin measured in different biological fluids at thawing (T0), 24 (T1), 48 (T2) and at 72 (T3) hours after thawing. RESULTS: No significant differences (p>0.05, for all) in presepsin levels were observed at T0-T3 in the different biological fluids. Furthermore, no differences at T0-T3 were observed in presepsin levels between blood and saliva fluids, whilst urine levels were significantly higher (p<0.05, for all) than blood and saliva at T0-T3. CONCLUSIONS: Results on presepsin pre-analytical thermo-stability in different biological fluids after long-term refrigeration support the reliability of this biomarker in the diagnosis and monitoring of perinatal sepsis.


Assuntos
Líquidos Corporais , Sepse , Lactente , Feminino , Gravidez , Humanos , Recém-Nascido , Temperatura , Reprodutibilidade dos Testes , Sepse/diagnóstico , Biomarcadores , Receptores de Lipopolissacarídeos , Fragmentos de Peptídeos , Proteína C-Reativa
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732100

RESUMO

The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1ß induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1ß compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.


Assuntos
Resinas Compostas , Fibroblastos , Gengiva , Interleucina-1beta , Polimetil Metacrilato , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/citologia , Resinas Compostas/farmacologia , Resinas Compostas/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Cultivadas , Fator de Transcrição RelA/metabolismo , Adesão Celular/efeitos dos fármacos
3.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569380

RESUMO

Mesenchymal stem/stromal cells (MSCs) have fewer ethical, moral, and safety problems in comparison with embryonic stem cells [...].


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diferenciação Celular , Células-Tronco Embrionárias
4.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047593

RESUMO

Graphene oxide (GO), derived from graphene, has remarkable chemical-physical properties such as stability, strength, and thermal or electric conductivity and additionally shows antibacterial and anti-inflammatory properties. The present study aimed to evaluate the anti-inflammatory effects of polypropylene suture threads buttons (PPSTBs), enriched with two different concentrations of GO, in the modulation of the inflammatory pathway TLR4/MyD 88/NFκB p65/NLRP3 induced by the Escherichia coli (E. coli) lipopolysaccharide (LPS-E). The gene and the protein expression of inflammatory markers were evaluated in an in vitro model of primary human gingival fibroblasts (hGFs) by real-time PCR, western blotting, and immunofluorescence analysis. Both GO concentrations used in the polypropylene suture threads buttons-GO constructs (PPSTBs-GO) decreased the expression of inflammatory markers in hGFs treated with LPS-E. The hGFs morphology and adhesion on the PPSTBs-GO constructs were also visualized by inverted light microscopy, scanning electron microscopy (SEM), and real-time PCR. Together, these results suggest that enriched PPSTBs-GO modulates the inflammatory process through TLR4/MyD 88/NFκB p65/NLRP3 pathway.


Assuntos
Grafite , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Grafite/farmacologia , Grafite/metabolismo , Escherichia coli/metabolismo , Polipropilenos/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Anti-Inflamatórios/farmacologia , Suturas , Fibroblastos/metabolismo
5.
Histochem Cell Biol ; 158(4): 369-381, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751679

RESUMO

Human periodontal ligament mesenchymal stem cells (hPDLSCs) are a promising cell type model for regenerative medicine applications due to their anti-inflammatory, immunomodulatory and non-tumorigenic potentials. Extremely low-frequency electromagnetic fields (ELF-EMF) are reported to affect biological properties such as cell proliferation and differentiation and modulate gene expression profile. In this study, we investigated the effects of an intermittent ELF-EMF exposure (6 h/day) for the standard differentiation period (28 days) and for 10 days in hPDLSCs in the presence or not of osteogenic differentiation medium (OM). We evaluated cell proliferation, de novo calcium deposition and osteogenic differentiation marker expression in sham and ELF-EMF-exposed cells. After ELF-EMF exposure, compared with sham-exposed, an increase in cell proliferation rate (p < 0.001) and de novo calcium deposition (p < 0.001) was observed after 10 days of exposure. Real-time PCR and Western blot results showed that COL1A1 and RUNX-2 gene expression and COL1A1, RUNX-2 and OPN protein expression were upregulated respectively in the cells exposed to ELF-EMF exposure along with or without OM for 10 days. Altogether, these results suggested that the promotion of osteogenic differentiation is more efficient in ELF-EMF-exposed hPDLSCs. Moreover, our analyses indicated that there is an early induction of hPDLSC differentiation after ELF-EMF application.


Assuntos
Campos Eletromagnéticos , Osteogênese , Humanos , Cálcio , Diferenciação Celular
6.
Clin Chem Lab Med ; 60(8): 1136-1144, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35562321

RESUMO

Perinatal sepsis constitutes a medical emergency and is still one of the major causes of mortality and morbidity. The possibility of an early diagnosis of sepsis is still debated and controversial. In particular, clinical symptoms can be hidden by the association of sepsis with other perinatal diseases and/or by therapeutic strategies performed. In this context, there is evidence that the accuracy of standard of care diagnostic parameters (i.e. blood culture, C-reactive protein, procalcitonin) can be biased by additional confounding factors (gestational age, birth-weight, acute-chronic hypoxia). Therefore, the inclusion in clinical daily practice of new biomarkers of sepsis is of utmost importance. Of a panel of biomarkers, Presepsin (P-SEP) plays an important role in the development and response of the immune system and as an early marker of sepsis both in adult and pediatric patients. Therefore, in the present review we aim to offer an overview of the role of P-SEP in the early detection of perinatal sepsis as a trustworthy marker according to actual statements of official international institutions. Future perspectives regard the possibility of a longitudinal non-invasive biological fluids P-SEP assessment thus limiting the sample stress in high risk newborns.


Assuntos
Doenças do Recém-Nascido , Sepse , Adulto , Biomarcadores , Proteína C-Reativa/análise , Criança , Feminino , Humanos , Recém-Nascido , Receptores de Lipopolissacarídeos , Fragmentos de Peptídeos , Gravidez , Pró-Calcitonina , Sepse/diagnóstico
7.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456951

RESUMO

The gingival tissue can be collected in an easy way and represent an accessible source to isolate gingival-derived mesenchymal stem cells (GMSCs). GMSCs are a subpopulation of dental-derived mesenchymal stem cells that show the mesenchymal stem cells (MSCs) features, such as differentiation abilities and immunomodulatory properties. Dental-derived stem cells are also expandable in vitro with genomic stability and the possibility to maintain the stemness properties over a prolonged period of passages. Moreover, several preclinical studies have documented that the extracellular vesicles (EVs) released from GMSCs possess similar biological functions and therapeutic effects. The EVs may represent a promising tool in the cell-free regenerative therapy approach. The present review paper summarized the GMSCs, their multi-lineage differentiation capacities, immunomodulatory features, and the potential use in the treatment of several diseases in order to stimulate tissue regeneration. GMSCs should be considered a good stem cell source for potential applications in tissue engineering and regenerative dentistry.


Assuntos
Células-Tronco Mesenquimais , Medicina Regenerativa , Diferenciação Celular/genética , Gengiva , Engenharia Tecidual
8.
Histochem Cell Biol ; 156(5): 423-436, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34370052

RESUMO

Periodontitis is a common inflammatory disease that affects the teeth-supporting tissue and causes bone and tooth loss. Moreover, in a worldwide population, periodontal disease is often associated with cardiovascular diseases. Emerging studies have reported that one of the major pathogens related to periodontitis is Porphyromonas gingivalis (P. gingivalis), which triggers the inflammatory intracellular cascade. Here, we hypothesized a possible protective effect of ascorbic acid (AA) in the restoration of the physiological molecular pathway after exposure to lipopolysaccharide derived from P. gingivalis (LPS-G). In particular, human gingiva-derived mesenchymal stem cells (hGMSCs) and endothelial-differentiated hGMSCs (e-hGMSCs) exposed to LPS-G showed upregulation of p300 and downregulation of DNA methyltransferase 1 (DNMT1), proteins associated with DNA methylation and histone acetylation. The co-treatment of AA and LPS-G showed a physiological expression of p300 and DNMT1 in hGMSCs and e-hGMSCs. Moreover, the inflammatory process triggered by LPS-G was demonstrated by evaluation of reactive oxygen species (ROS) and their intracellular localization. AA exposure re-established the physiological ROS levels. Despite the limitations of in vitro study, these findings collectively expand our knowledge regarding the molecular pathways involved in periodontal disease, and suggest the involvement of epigenetic modifications in the development of periodontitis.


Assuntos
Ácido Ascórbico/farmacologia , Células Endoteliais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ácido Ascórbico/química , Células Endoteliais/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Porphyromonas gingivalis/metabolismo , Substâncias Protetoras/química
9.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830355

RESUMO

Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell-cell and cell-microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and "organ-on-a-chip" models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.


Assuntos
Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos , Receptores Notch/genética , Humanos , Microfluídica/métodos , Organoides/citologia , Transdução de Sinais/genética , Esferoides Celulares/citologia
10.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299157

RESUMO

Curcumin, a yellow polyphenol extracted from the turmeric root is used as a diet supplement. It exhibits anti-inflammatory, antioxidant, and antitumor properties by modulating different intracellular mechanisms. Due to their low solubility in water, the curcumin molecules must be encapsulated into liposomes to improve the bioavailability and biomedical potential. For the periodontal tissue and systemic health, it is essential to regulate the local inflammatory response. In this study, the possible beneficial effect of liposomes loaded with curcumin (CurLIP) in neural crest-derived human periodontal ligament stem cells (hPDLSCs) and in endothelial-differentiated hPDLSCs (e-hPDLSCs) induced with an inflammatory stimulus (lipopolysaccharide obtained from Porphyromonas gingivalis, LPS-G) was evaluated. The CurLIP formulation exhibited a significant anti-inflammatory effect by the downregulation of Toll-like receptor-4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa light chain enhancer of activated B cells (NFkB)/NLR Family Pyrin Domain Containing 3 (NLRP3)/Caspase-1/Interleukin (IL)-1ß inflammation cascade and reactive oxygen species (ROS) formation. Moreover, the exposure to LPS-G caused significant alterations in the expression of epigenetic modifiers, such as DNA Methyltransferase 1 (DNMT1) and P300, while the CurLIP treatment showed physiological expression. Overall, our in vitro study provides novel mechanistic insights into the intracellular pathway exert by CurLIP in the regulation of inflammation and epigenetic modifications.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Crista Neural/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Diferenciação Celular , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipossomos/administração & dosagem , Lipossomos/química , Crista Neural/citologia , Crista Neural/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Porphyromonas gingivalis/química , Espécies Reativas de Oxigênio , Células-Tronco/citologia , Células-Tronco/metabolismo
11.
Int J Mol Sci ; 22(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063438

RESUMO

In the last few decades, tissue engineering has become one of the most studied medical fields. Even if bone shows self-remodeling properties, in some cases, due to injuries or anomalies, bone regeneration can be required. In particular, oral bone regeneration is needed in the dentistry field, where the functional restoration of tissues near the tooth represents a limit for many dental implants. In this context, the application of biomaterials and mesenchymal stem cells (MSCs) appears promising for bone regeneration. This review focused on in vivo studies that evaluated bone regeneration using biomaterials with MSCs. Different biocompatible biomaterials were enriched with MSCs from different sources. These constructs showed an enhanced bone regenerative power in in vivo models. However, we discussed also a future perspective in tissue engineering using the MSC secretome, namely the conditioned medium and extracellular vesicles. This new approach has already shown promising results for bone tissue regeneration in experimental models.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea/fisiologia , Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Humanos , Medicina Regenerativa/métodos , Alicerces Teciduais
12.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957696

RESUMO

At present, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has quickly become a health emergency because no specifics vaccines or drugs, at this moment, are available. Recent studies have shown that the transplantation of mesenchymal stem cells (MSCs) into Coronavirus Disease 2019 (COVID-19) patients could represent a promising strategy for the development of new therapeutic methods. We speculate and suggest that the secretome of human Oral Tissue Stem Cells (hOTSCs), for their immunomodulatory and anti-inflammatory specific properties, could exert beneficial effects on the COVID-19 patients through an innovative aerosolisation technique. This non-invasive technique can offer multiple advantages in prophylaxis, as well as the prevention and treatment of severe epidemic respiratory syndrome with minimum risk and optimal therapeutic effects. This has the potential to create a novel pathway towards immunomodulatory therapy for the treatment of COVID-19 positive patients.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Células-Tronco Mesenquimais/metabolismo , Mucosa Bucal/citologia , Pneumonia Viral/tratamento farmacológico , Proteoma/uso terapêutico , COVID-19 , Humanos , Fatores Imunológicos/metabolismo , Pandemias , Proteoma/metabolismo , Via Secretória
13.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963888

RESUMO

Spinal cord injury (SCI) is a traumatic lesion that causes disability with temporary or permanent sensory and/or motor deficits. The pharmacological approach still in use for the treatment of SCI involves the employment of corticosteroid drugs. However, SCI remains a very complex disorder that needs future studies to find effective pharmacological treatments. SCI actives a strong inflammatory response that induces a loss of neurons followed by a cascade of events that lead to further spinal cord damage. Many experimental studies demonstrate the therapeutic effect of stem cells in SCI due to their capacity to differentiate into neuronal cells and by releasing neurotrophic factors. Therefore, they appear to be a valid strategy to use in the field of regenerative medicine. The purpose of this paper is to provide an overview of clinical trials, recorded in clinical trial.gov during 2005-2019, aimed to evaluate the use of stem cell-based therapy in SCI. The results available thus far show the safety and efficacy of stem cell therapy in patients with SCI. However, future trials are needed to investigate the safety and efficacy of stem cell transplantation.


Assuntos
Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Ensaios Clínicos como Assunto , Humanos , Recuperação de Função Fisiológica , Medicina Regenerativa , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
14.
Int J Mol Sci ; 21(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023074

RESUMO

Extremely low frequency electromagnetic fields (ELF-EMFs) have been known to modulate inflammatory responses by targeting signal transduction pathways and influencing cellular redox balance through the generation of oxidants and antioxidants. Here, we studied the molecular mechanism underlying the anti-oxidative effect of ELF-EMF in THP-1 cells, particularly with respect to antioxidant enzymes, such as heme oxygenase-1 (HO-1), regulated transcriptionally through nuclear factor E2-related factor 2 (Nrf2) activation. Cells treated with lipopolysaccharides (LPS) were exposed to a 50 Hz, 1 mT extremely low frequency electromagnetic fields for 1 h, 6 h and, 24 h. Our results indicate that ELF-EMF induced HO-1 mRNA and protein expression in LPS-treated THP-1 cells, with peak expression at 6 h, accompanied with a concomitant migration to the nucleus of a truncated HO-1 protein form. The immunostaining analysis further verified a nuclear enrichment of HO-1. Moreover, ELF-EMF inhibited the protein expressions of the sirtuin1 (SIRT1) and nuclear factor kappa B (NF-kB) pathways, confirming their anti-inflammatory/antioxidative role. Pretreatment with LY294002 (Akt inhibitor) and PD980559 (ERK inhibitor) inhibited LPS-induced Nrf2 nuclear translocation and HO-1 protein expression in ELF-EMF-exposed cells. Taken together, our results suggest that short ELF-EMF exposure exerts a protective role in THP-1 cells treated with an inflammatory/oxidative insult such as LPS, via the regulation of Nrf-2/HO-1 and SIRT1 /NF-kB pathways associated with intracellular glutathione (GSH) accumulation.


Assuntos
Campos Eletromagnéticos , Heme Oxigenase-1/genética , Inflamação/terapia , Fator 2 Relacionado a NF-E2/genética , Sirtuína 1/genética , Linhagem Celular , Movimento Celular/efeitos da radiação , Cromonas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos da radiação , Glutationa/genética , Glutationa/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Morfolinas/farmacologia , Compostos Orgânicos/farmacologia , Estresse Oxidativo/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos da radiação
15.
Int J Mol Sci ; 21(9)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375269

RESUMO

Bone tissue renewal can be outlined as a complicated mechanism centered on the interaction between osteogenic and angiogenic events capable of leading to bone formation and tissue renovation. The achievement or debacle of bone regeneration is focused on the primary role of vascularization occurrence; in particular, the turning point is the opportunity to vascularize the bulk scaffolds, in order to deliver enough nutrients, growth factors, minerals and oxygen for tissue restoration. The optimal scaffolds should ensure the development of vascular networks to warrant a positive suitable microenvironment for tissue engineering and renewal. Vascular Endothelial Growth Factor (VEGF), a main player in angiogenesis, is capable of provoking the migration and proliferation of endothelial cells and indirectly stimulating osteogenesis, through the regulation of the osteogenic growth factors released and through paracrine signaling. For this reason, we concentrated our attention on two principal groups involved in the renewal of bone tissue defects: the cells and the scaffold that should guarantee an effective vascularization process. The application of Mesenchymal Stem Cells (MSCs), an excellent cell source for tissue restoration, evidences a crucial role in tissue engineering and bone development strategies. This review aims to provide an overview of the intimate connection between blood vessels and bone formation that appear during bone regeneration when MSCs, their secretome-Extracellular Vesicles (EVs) and microRNAs (miRNAs) -and bone substitutes are used in combination.


Assuntos
Regeneração Óssea , Neovascularização Fisiológica , Osteogênese , Animais , Diferenciação Celular , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
16.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114229

RESUMO

Extracellular vesicles (EVs) play a crucial role in the intercellular crosstalk. Mesenchymal stem cell-derived EVs (MSC-EVs), displaying promising therapeutic roles, contribute to the strong rationale for developing EVs as an alternative therapeutic option. EV analysis still represents one of the major issues to be solved in order to translate the use of MSC-EV detection in clinical settings. Even if flow cytometry (FC) has been largely applied for EV studies, the lack of consensus on protocols for FC detection of EVs generated controversy. Standard FC procedures, based on scatter measurements, only allows the detection of the "tip of the iceberg" of all EVs. We applied an alternative FC approach based on the use of a trigger threshold on a fluorescence channel. The EV numbers obtained by the application of the fluorescence triggering resulted significantly higher in respect to them obtained from the same samples acquired by placing the threshold on the side scatter (SSC) channel. The analysis of EV concentrations carried out by three different standardized flow cytometers allowed us to achieve a high level of reproducibility (CV < 20%). By applying the here-reported method highly reproducible results in terms of EV analysis and concentration measurements were obtained.


Assuntos
Vesículas Extracelulares/metabolismo , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Difusão Dinâmica da Luz , Separação Imunomagnética , Células-Tronco Mesenquimais/metabolismo
17.
Molecules ; 25(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019204

RESUMO

It was shown that AEDG peptide (Ala-Glu-Asp-Gly, Epitalon) regulates the function of the pineal gland, the retina, and the brain. AEDG peptide increases longevity in animals and decreases experimental cancerogenesis. AEDG peptide induces neuronal cell differentiation in retinal and human periodontal ligament stem cells. The aim of the study was to investigate the influence of AEDG peptide on neurogenic differentiation gene expression and protein synthesis in human gingival mesenchymal stem cells, and to suggest the basis for the epigenetic mechanism of this process. AEDG peptide increased the synthesis of neurogenic differentiation markers: Nestin, GAP43, ß Tubulin III, Doublecortin in hGMSCs. AEDG peptide increased Nestin, GAP43, ß Tubulin III and Doublecortin mRNA expression by 1.6-1.8 times in hGMSCs. Molecular modelling method showed, that AEDG peptide preferably binds with H1/6 and H1/3 histones in His-Pro-Ser-Tyr-Met-Ala-His-Pro-Ala-Arg-Lys and Tyr-Arg-Lys-Thr-Gln sites, which interact with DNA. These results correspond to previous experimental data. AEDG peptide and histones H1/3, H1/6 binding may be one of the mechanisms which provides an increase of Nestin, GAP43, ß Tubulin III, and Doublecortin neuronal differentiation gene transcription. AEDG peptide can epigenetically regulate neuronal differentiation gene expression and protein synthesis in human stem cells.


Assuntos
Epigênese Genética , Gengiva/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neurogênese , Neurônios/metabolismo , Oligopeptídeos/farmacologia , Biossíntese de Proteínas , Regulação da Expressão Gênica , Gengiva/citologia , Gengiva/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos
18.
Int Ophthalmol ; 40(1): 125-134, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31451986

RESUMO

PURPOSE: To compare the corneal tissue trauma after the use of an automated preloaded injector and a manual injector and assess scanning electron microscope (SEM) and atomic force microscope (AFM) features of both injector cartridges. SETTING: Ophthalmology Clinic and Laboratory of Stem Cells and Regenerative Medicine University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy; DESIGN: Prospective randomized clinical study METHODS: Forty eyes of 40 patients for phacoemulsification were divided into two groups: implantation of intraocular lens was performed with AutonoMe automated delivery system (AutonoMe group: 20 eyes) and Monarch III injector system (Monarch group: 20 eyes). In vivo confocal microscopy (IVCM) and anterior segment optical coherence tomography (AS-OCT) were performed before surgery, at 1 h, 1 day and 1 month post-operatively. In addition, SEM and AFM were performed on cartridges of both injector systems after injection of the IOL. RESULTS: A greater increase in central corneal thickness and corneal thickness at the incision site were observed in Monarch group versus AutonoMe group 1 h and 1 day post-operatively (p < 0.05). Endothelial cell count loss was significantly higher in Monarch group compared with AutonoMe group (p < 0.05) at 1 and 24 h. AS-OCT showed less endothelial misalignment at 30 days (p < 0.05), and IVCM showed less tunnel inflammation at all time points (p < 0.05) in AutonoMe group compared with Monarch group; roughness analysis at AFM of the AutonoMe cartridge was significantly lower compared to Monarch D cartridge (p < 0.05). CONCLUSIONS: The AutonoMe injector provided less corneal tissue trauma compared with Monarch III injector. The AutonoMe cartridge showed lower roughness at AFM compared to the Monarch D cartridge.


Assuntos
Catarata/diagnóstico por imagem , Implante de Lente Intraocular/instrumentação , Lentes Intraoculares , Facoemulsificação/métodos , Idoso , Endotélio Corneano/ultraestrutura , Desenho de Equipamento , Feminino , Seguimentos , Humanos , Masculino , Microscopia Eletrônica de Varredura , Estudos Prospectivos , Tomografia de Coerência Óptica
19.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600975

RESUMO

Tissue engineering and/or regenerative medicine are fields of life science exploiting both engineering and biological fundamentals to originate new tissues and organs and to induce the regeneration of damaged or diseased tissues and organs. In particular, de novo bone tissue regeneration requires a mechanically competent osteo-conductive/inductive 3D biomaterial scaffold that guarantees the cell adhesion, proliferation, angiogenesis and differentiation into osteogenic lineage. Cellular components represent a key factor in tissue engineering and bone growth strategies take advantage from employment of mesenchymal stem cells (MSCs), an ideal cell source for tissue repair. Recently, the application of extracellular vesicles (EVs), isolated from stem cells, as cell-free therapy has emerged as a promising therapeutic strategy. This review aims at summarizing the recent and representative research on the bone tissue engineering field using a 3D scaffold enriched with human oral stem cells and their derivatives, EVs, as a promising therapeutic potential in the reconstructing of bone tissue defects.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores , Colágeno/metabolismo , Humanos , Fenótipo , Medicina Regenerativa , Engenharia Tecidual
20.
Int J Mol Sci ; 20(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801206

RESUMO

Inflammation is a common feature of many neurodegenerative diseases. The treatment of stem cells as a therapeutic approach to repair damage in the central nervous system represents a valid alternative. In this study, using Next-Generation Sequencing (NGS) technology, we analyzed the transcriptomic profile of human Gingival Mesenchymal Stem Cells (hGMSCs) treated with Moringin [4-(α-l-ramanosyloxy)-benzyl isothiocyanate] (hGMSCs-MOR) or with Cannabidiol (hGMSCs-CBD) at dose of 0.5 or 5 µM, respectively. Moreover, we compared their transcriptomic profiles in order to evaluate analogies and differences in pro- and anti-inflammatory pathways. The hGMSCs-MOR selectively downregulate TNF-α signaling from the beginning, reducing the expression of TNF-α receptor while hGMSCs-CBD limit its activity after the process started. The treatment with CBD downregulates the pro-inflammatory pathway mediated by the IL-1 family, including its receptor while MOR is less efficient. Furthermore, both the treatments are efficient in the IL-6 signaling. In particular, CBD reduces the effect of the pro-inflammatory JAK/STAT pathway while MOR enhances the pro-survival PI3K/AKT/mTOR. In addition, both hGMSCs-MOR and hGMSCs-CBD improve the anti-inflammatory activity enhancing the TGF-ß pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Canabidiol/farmacologia , Isotiocianatos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gengiva/citologia , Gengiva/efeitos dos fármacos , Gengiva/imunologia , Humanos , Interleucina-1/genética , Interleucina-1/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Transcriptoma/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA