Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 461(1): 43-54, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31923383

RESUMO

FgfrL1 is a novel growth factor receptor that is primarily expressed in musculoskeletal tissues and the kidney. FgfrL1-deficient mice have a malformed diaphragm and no kidneys. Such animals die immediately after birth because they are not able to inflate their lungs. The FgfrL1 molecule is composed of three extracellular Ig domains, a transmembrane helix and a short intracellular domain. To investigate the contribution of each of these domains to the function of the novel receptor, we generated mice with deletions of the individual domains. Mice lacking the intracellular domain are viable and phenotypically normal. Mice lacking the first (N-terminal) Ig domain are also viable and normal, but have a reduced life span. Mice lacking the Ig2 or the Ig3 domain are born alive, but die within 24 â€‹h after birth. Ig2-deficient animals exhibit substantially smaller kidneys than wild-type littermates and contain a lower number of glomeruli. Ig3-deficient mice completely lack metanephric kidneys. Interestingly, both the Ig2 and the Ig3-deficient animals show only minor alterations in the diaphragm, which still enables them to inflate their lungs after birth. Our results demonstrate that the principal function of the FgfrL1 receptor is to control the growth of the metanephric kidneys by regulating nephrogenesis. It appears that this function is primarily accomplished by the Ig3 domain with some contribution of the Ig2 domain. It is conceivable that the two domains interact with an Fgf ligand and another molecule from the surface of neighboring cells to induce condensation of the metanephric mesenchyme to renal epithelia and glomeruli.


Assuntos
Diafragma/anormalidades , Rim/embriologia , Sistema Musculoesquelético/embriologia , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese/genética , Organogênese/fisiologia , Domínios Proteicos/genética
2.
Arch Biochem Biophys ; 625-626: 54-64, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596102

RESUMO

FGFRL1 is a transmembrane receptor that can induce the fusion of CHO cells to multinucleated syncytia. This cell fusion activity has been attributed to the extracellular Ig3 domain of the receptor. We investigated how the fusogenic activity evolved during the evolution of animals. We found that the Ig3 domain from humans, mice, chicken and fish stimulates fusion of CHO cells, while the Ig3 domain from lancelet and sea urchin does not. It is therefore conceivable that the fusogenic activity of FGFRL1 developed during the evolution of vertebrates. Bony fish contain two copies of the FGFRL1 gene because they have undergone a whole-genome duplication. One of the corresponding proteins (FGFRL1a) induces cell-cell fusion, while the other (FGFRL1b) does not. Analysis of chimeric constructs and in vitro mutagenesis suggested that FGFRL1b has lost its fusogenic activity after duplication. A rescue experiment supported this conclusion. When four amino acids were changed, the Ig3 domain of FGFRL1b was converted into an active, fusogenic protein comparable to FGFRL1a. The four amino acids are located in a hydrophobic pocket of the Ig3 domain. It is likely that this hydrophobic pocket interacts with a target molecule on the membrane of adjacent cells to induce cell-cell fusion.


Assuntos
Células Gigantes/metabolismo , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Fusão Celular , Clonagem Molecular , Cricetulus , Evolução Molecular , Células Gigantes/citologia , Humanos , Domínios Proteicos , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Alinhamento de Sequência
3.
Biochim Biophys Acta ; 1853(10 Pt A): 2273-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26025674

RESUMO

FGFRL1 is a single-pass transmembrane protein with three extracellular Ig domains. When overexpressed in CHO cells or related cell types, it induces cell-cell fusion and formation of large, multinucleated syncytia. For this fusion-promoting activity, only the membrane-proximal Ig domain (Ig3) and the transmembrane domain are required. It does not matter whether the transmembrane domain is derived from FGFRL1 or from another receptor, but the distance of the Ig3 domain to the membrane is crucial. Fusion can be inhibited with soluble recombinant proteins comprising the Ig1-Ig2-Ig3 or the Ig2-Ig3 domains as well as with monoclonal antibodies directed against Ig3. Mutational analysis reveals a hydrophobic site in Ig3 that is required for fusion. If a single amino acid from this site is mutated, fusion is abolished. The site is located on a ß-sheet, which is part of a larger ß-barrel, as predicted by computer modeling of the 3D structure of FGFRL1. It is possible that this site interacts with a target protein of neighboring cells to trigger cell-cell fusion.


Assuntos
Modelos Moleculares , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Células CHO , Fusão Celular , Cricetinae , Cricetulus , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Dev Biol ; 394(2): 228-41, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25172430

RESUMO

FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers.


Assuntos
Diafragma/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Lenta/fisiologia , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Northern Blotting , Diafragma/citologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Análise em Microsséries , Desenvolvimento Muscular/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Reação em Cadeia da Polimerase
6.
Cell Mol Life Sci ; 70(14): 2505-18, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23112089

RESUMO

The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Rim/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Transição Epitelial-Mesenquimal , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Rim/crescimento & desenvolvimento , Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais
7.
Cell Mol Life Sci ; 68(6): 951-64, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21080029

RESUMO

FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.


Assuntos
Craniossinostoses/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Rim/metabolismo , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos , Animais , Heparina/metabolismo , Humanos , Rim/crescimento & desenvolvimento , Camundongos , Dados de Sequência Molecular , Filogenia , Planárias , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência , Especificidade da Espécie , Xenopus
8.
J Biol Chem ; 285(48): 37704-15, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20851884

RESUMO

The fusion of mammalian cells into syncytia is a developmental process that is tightly restricted to a limited subset of cells. Besides gamete and placental trophoblast fusion, only macrophages and myogenic stem cells fuse into multinucleated syncytia. In contrast to viral cell fusion, which is mediated by fusogenic glycoproteins that actively merge membranes, mammalian cell fusion is poorly understood at the molecular level. A variety of mammalian transmembrane proteins, among them many of the immunoglobulin superfamily, have been implicated in cell-cell fusion, but none has been shown to actively fuse cells in vitro. Here we report that the FGFRL1 receptor, which is up-regulated during the differentiation of myoblasts into myotubes, fuses cultured cells into large, multinucleated syncytia. We used luciferase and GFP-based reporter assays to confirm cytoplasmic mixing and to identify the fusion inducing domain of FGFRL1. These assays revealed that Ig-like domain III and the transmembrane domain are both necessary and sufficient to rapidly fuse CHO cells into multinucleated syncytia comprising several hundred nuclei. Moreover, FGFRL1 also fused HEK293 and HeLa cells with untransfected CHO cells. Our data show that FGFRL1 is the first mammalian protein that is capable of inducing syncytium formation of heterologous cells in vitro.


Assuntos
Diferenciação Celular , Expressão Gênica , Células Gigantes/citologia , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Células CHO , Fusão Celular , Cricetinae , Cricetulus , Células Gigantes/metabolismo , Células HEK293 , Células HeLa , Humanos , Mioblastos/citologia , Mioblastos/metabolismo , Estrutura Terciária de Proteína , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química
9.
J Biol Chem ; 285(3): 2193-202, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19920134

RESUMO

FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.


Assuntos
Membrana Celular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Xenopus/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Larva/crescimento & desenvolvimento , Ligantes , Camundongos , Dados de Sequência Molecular , Mioblastos/citologia , Peptídeo Hidrolases/metabolismo , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Solubilidade , Ressonância de Plasmônio de Superfície
10.
Exp Cell Res ; 316(7): 1202-12, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20043904

RESUMO

Mammalian teeth are composed of hydroxyapatite crystals that are embedded in a rich extracellular matrix. This matrix is produced by only two cell types, the mesenchymal odontoblasts and the ectodermal ameloblasts. Ameloblasts secrete the enamel proteins amelogenin, ameloblastin, enamelin and amelotin. Odontoblasts secrete collagen type I and several calcium-binding phosphoproteins including dentin sialophosphoprotein, dentin matrix protein, bone sialoprotein and osteopontin. The latter four proteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) because they display similar gene structures and because they contain an RGD tripeptide sequence that binds to integrin receptors and thus mediates cell adhesion. We have prepared all the other tooth-specific proteins in recombinant form and examined whether they might also promote cell adhesion similar to the SIBLINGs. We found that only ameloblastin consistently mediated adhesion of osteoblastic and fibroblastic cells to plastic or titanium surfaces. The activity was dependent on the intact three-dimensional structure of ameloblastin and required de novo protein synthesis of the adhering cells. By deletion analysis and in vitro mutagenesis, the active site could be narrowed down to a sequence of 13 amino acid residues (VPIMDFADPQFPT) derived from exon 7 of the rat ameloblastin gene or exons 7-9 of the human gene. Kinetic studies and RNA interference experiments further demonstrated that this sequence does not directly bind to a cell surface receptor but that it interacts with cellular fibronectin, which in turn binds to integrin receptors. The identification of a fibronectin-binding domain in ameloblastin might permit interesting applications for dental implantology. Implants could be coated with peptides containing the active sequence, which in turn would recruit fibronectin from the patient's blood. The recruited fibronectin should then promote cell adhesion on the implant surface, thereby accelerating osseointegration of the implant.


Assuntos
Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/metabolismo , Fibronectinas/metabolismo , Células 3T3 , Animais , Sítios de Ligação , Adesão Celular/fisiologia , Células Cultivadas , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas Recombinantes/metabolismo
11.
Dev Biol ; 335(1): 106-19, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19715689

RESUMO

Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.


Assuntos
Rim , Néfrons , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Feminino , Expressão Gênica , Rim/anormalidades , Rim/embriologia , Rim/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos Transgênicos , Néfrons/anormalidades , Néfrons/embriologia , Néfrons/metabolismo , Gravidez , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Técnicas de Cultura de Tecidos
12.
Biochim Biophys Acta ; 1792(2): 112-21, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19056490

RESUMO

Fibroblast growth factor receptor-like 1 (FGFRL1) is a recently discovered transmembrane protein whose functions remain unclear. Since mutations in the related receptors FGFR1-3 cause skeletal malformations, DNA samples from 55 patients suffering from congenital skeletal malformations and 109 controls were searched for mutations in FGFRL1. One patient was identified harboring a frameshift mutation in the intracellular domain of this novel receptor. The patient showed craniosynostosis, radio-ulnar synostosis and genital abnormalities and had previously been diagnosed with Antley-Bixler syndrome. The effect of the FGFRL1 mutation was studied in vitro. In a reporter gene assay, the wild-type as well as the mutant receptor inhibited FGF signaling. However, the mutant protein differed from the wild-type protein in its subcellular localization. Mutant FGFRL1 was mainly found at the plasma membrane where it interacted with FGF ligands, while the wild-type protein was preferentially located in vesicular structures and the Golgi complex. Two motifs from the intracellular domain of FGFRL1 appeared to be responsible for this differential distribution, a tandem tyrosine based motif and a histidine-rich sequence. Deletion of either one led to the preferential redistribution of FGFRL1 to the plasma membrane. It is therefore likely that mutant FGFRL1 contributes to the skeletal malformations of the patient.


Assuntos
Craniossinostoses/metabolismo , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Sequência de Bases , Biomarcadores , Linhagem Celular , Membrana Celular , Craniossinostoses/genética , Cricetinae , Endocitose , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Transdução de Sinais
13.
Hum Genet ; 127(3): 325-36, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20024584

RESUMO

Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p > or = 0.05). We then used Affymetrix Genechip Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice-Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.


Assuntos
Cromossomos Humanos Par 4 , Diafragma/anormalidades , Doenças Peritoneais/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Sarcômeros/genética , Tropomiosina/genética , Animais , Diafragma/metabolismo , Regulação para Baixo/genética , Embrião de Mamíferos , Frequência do Gene , Estudos de Associação Genética , Hérnia Diafragmática/genética , Hérnia Diafragmática/patologia , Hérnias Diafragmáticas Congênitas , Humanos , Camundongos , Camundongos Knockout , Doenças Peritoneais/congênito , Polimorfismo de Nucleotídeo Único , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/análise , Sarcômeros/metabolismo , Tropomiosina/metabolismo
14.
Genet Test Mol Biomarkers ; 24(10): 658-664, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32907400

RESUMO

Background: Allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, and food allergies, are caused by both environmental and genetic factors. The allergic condition, where genetic factors make up the largest proportion (up to 95%), is asthma. Aim: To identify polymorphisms and mutations in potentially disease-causing genes in a family affected with allergic asthma. Methods: Whole exome sequencing of the index patient was performed via next-generation sequencing. Variants in known allergy-associated susceptibility genes were identified by comparison with the reference genome GRChr37. Results: Seven common polymorphisms and three rare mutations were identified in the allergy-susceptibility genes of the index patient. Only four of these variants co-segregated with a second patient in the same family. These variants occurred in the TENS1, NPSR1, RAD50, and IL6R genes. Discussion: The variants observed in TENS1 and NPSR1 are relatively common (minor allele frequency, MAF ∼0.4), whereas the mutation in RAD50 is rare (MAF 0.0035). The mutation identified in IL6R (S409P) has never been found before. IL6R encodes an important receptor of the inflammatory system. The mutation occurs in the intracellular domain within a tyrosine-based motif, which is required for sorting of the IL6R protein to the basolateral side of polarized cells. It is likely that this rare mutation contributes-together with the other variants-to the predisposition to asthma and other allergic diseases.


Assuntos
Asma/genética , Receptores de Interleucina-6/genética , Adulto , Dermatite Atópica/genética , Família , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Receptores de Interleucina-6/metabolismo
15.
Biomolecules ; 10(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019532

RESUMO

In mammals, the novel protein fibroblast growth factor receptor-like 1 (FGFRL1) is involved in the development of metanephric kidneys. It appears that this receptor controls a crucial transition of the induced metanephric mesenchyme to epithelial renal vesicles, which further develop into functional nephrons. FGFRL1 knockout mice lack metanephric kidneys and do not express any fibroblast growth factor (FGF) 8 in the metanephric mesenchyme, suggesting that FGFRL1 and FGF8 play a decisive role during kidney formation. FGFRL1 consists of three extracellular immunoglobulin (Ig) domains (Ig1-Ig2-Ig3), a transmembrane domain and a short intracellular domain. We have prepared the extracellular domain (Ig123), the three individual Ig domains (Ig1, Ig2, Ig3) as well as all combinations containing two Ig domains (Ig12, Ig23, Ig13) in recombinant form in human cells. All polypeptides that contain the Ig2 domain (Ig123, Ig12, Ig23, Ig2) were found to interact with FGF8 with very high affinity, whereas all constructs that lack the Ig2 domain (Ig1, Ig3, Ig13) poorly interacted with FGF8 as shown by ELISA and surface plasmon resonance. It is therefore likely that FGFRL1 represents a physiological receptor for FGF8 in the kidney and that the ligand primarily binds to the Ig2 domain of the receptor. With Biacore experiments, we also measured the affinity of FGF8 for the different constructs. All constructs containing the Ig2 domain showed a rapid association and a slow dissociation phase, from which a KD of 2-3 × 10-9 M was calculated. Our data support the hypothesis that binding of FGF8 to FGFRL1 could play an important role in driving the formation of nephrons in the developing kidney.


Assuntos
Fator 8 de Crescimento de Fibroblasto/genética , Domínios de Imunoglobulina/genética , Rim/crescimento & desenvolvimento , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Animais , Transição Epitelial-Mesenquimal/genética , Humanos , Rim/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Ressonância de Plasmônio de Superfície
16.
BMC Biochem ; 10: 33, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20021659

RESUMO

BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.


Assuntos
Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Ouriços-do-Mar/metabolismo , Zinco/química , Sequência de Aminoácidos , Animais , Evolução Molecular , Glicosilação , Humanos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/classificação , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ouriços-do-Mar/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
17.
Int J Mol Med ; 23(2): 293-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19148556

RESUMO

Cementum is a highly specialized connective tissue that covers tooth roots. The only cementum-specific protein described to date is the cementum attachment protein (CAP). A putative sequence for CAP was established from a cDNA clone isolated from a human cementifying fibroma cDNA library. This sequence overlaps with a phosphatase-like protein in muscle termed the protein-tyrosine phosphatase-like member A (PTPLA). To clarify the nature of CAP/PTPLA, we cloned the homologous rat protein and determined its sequence. The rat protein shared 94% sequence identity with the human protein. On Northern blots containing RNA from various rat tissues of different developmental stages, the cDNA hybridized to an mRNA expressed in heart and skeletal muscle but not in teeth. These results were confirmed by real-time PCR. Thus, the sequence deposited in public databanks under the name 'cementum attachment protein' does not represent genuine CAP.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas Tirosina Fosfatases/genética , Dente/metabolismo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/metabolismo , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Alinhamento de Sequência
19.
FEBS J ; 274(23): 6241-53, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17986259

RESUMO

FGFRL1 is a recently discovered member of the fibroblast growth factor receptor family that is lacking the intracellular tyrosine kinase domain. To elucidate the function of the novel receptor, we created mice with a targeted disruption of the Fgfrl1 gene. These mice develop normally until term, but die within a few minutes after birth due to respiratory failure. The respiratory problems are explained by a significant reduction in the size of the diaphragm muscle, which is not sufficient to inflate the lungs after birth. The remaining portion of the diaphragm muscle appears to be well developed and innervated. It consists of differentiated myofibers with nuclei at the periphery. Fast and slow muscle fibers occur in normal proportions. The myogenic regulatory factors MyoD, Myf5, myogenin and Mrf4 and the myocyte enhancer factors Mef2A, Mef2B, Mef2C and Mef2D are expressed at normal levels. Experiments with a cell culture model involving C2C12 myoblasts show that Fgfrl1 is expressed during the late stages of myotube formation. Other skeletal muscles do not appear to be affected in the Fgfrl1 deficient mice. Thus, Fgfrl1 plays a critical role in the development of the diaphragm.


Assuntos
Diafragma/citologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/embriologia , Parto , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Camundongos Knockout , Músculo Esquelético/anormalidades , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Gravidez , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/deficiência
20.
Int J Mol Med ; 19(1): 49-54, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17143547

RESUMO

The organic material of our teeth consists of collagens and a number of calcium-binding phosphoproteins. Six of these phosphoproteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins), namely osteopontin, bone sialoprotein, dentin matrix protein (DMP1), dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE) and enamelin. We prepared a cDNA library from rat incisors in order to identify the genes involved in tooth formation. The library was screened by subtractive hybridization with two probes; one specific for teeth, the other for bone. We found that the vast majority of the clones from our library were expressed at similar levels in bone and teeth, demonstrating the close relationship of the two tissues. Only 7% of all the clones were expressed in a tooth-specific fashion. These included clones for the enamel proteins; amelotin, amelogenin, ameloblastin and enamelin; for the dentin proteins DSPP and DMP1; and for the intermediate filament protein cytokeratin 13. Several typical bone proteins, including collagen I, osteocalcin, alkaline phosphatase and FATSO, were also expressed at significantly higher levels in teeth than in bone, probably due to the extreme growth rate of rat incisors. The amino acid sequence of rat amelotin showed 62% identity with the sequence from humans. It was expressed considerably later than the other enamel proteins, suggesting that amelotin may serve a function different from those of amelogenin, ameloblastin and enamelin.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Incisivo/metabolismo , Fosfoproteínas/metabolismo , Dente/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/metabolismo , Proteínas do Esmalte Dentário/genética , Mandíbula/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA