Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Toxicol Appl Pharmacol ; 489: 116993, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870637

RESUMO

We tested the effect of substituents at the (1) C3´, C3´N, (2) C10, and (3) C2-meta-benzoate positions of taxane derivatives on their activity against sensitive versus counterpart paclitaxel-resistant breast (MCF-7) and ovarian (SK-OV-3) cancer cells. We found that (1) non-aromatic groups at both C3´ and C3´N positions, when compared with phenyl groups at the same positions of a taxane derivative, significantly reduced the resistance of ABCB1 expressing MCF-7/PacR and SK-OV-3/PacR cancer cells. This is, at least in the case of the SB-T-1216 series, accompanied by an ineffective decrease of intracellular levels in MCF-7/PacR cells. The low binding affinity of SB-T-1216 in the ABCB1 binding cavity can elucidate these effects. (2) Cyclopropanecarbonyl group at the C10 position, when compared with the H atom, seems to increase the potency and capability of the derivative in overcoming paclitaxel resistance in both models. (3) Derivatives with fluorine and methyl substituents at the C2-meta-benzoate position were variously potent against sensitive and resistant cancer cells. All C2 derivatives were less capable of overcoming acquired resistance to paclitaxel in vitro than non-substituted analogs. Notably, fluorine derivatives SB-T-121205 and 121,206 were more potent against sensitive and resistant SK-OV-3 cells, and derivatives SB-T-121405 and 121,406 were more potent against sensitive and resistant MCF-7 cells. (4) The various structure-activity relationships of SB-T derivatives observed in two cell line models known to express ABCB1 favor their complex interaction not based solely on ABCB1.

2.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800732

RESUMO

Matriptase-2, a serine protease expressed in hepatocytes, is a negative regulator of hepcidin expression. The purpose of the study was to investigate the interaction of matriptase-2 with hemojuvelin protein in vivo. Mice lacking the matriptase-2 proteolytic activity (mask mice) display decreased content of hemojuvelin protein. Vice versa, the absence of hemojuvelin results in decreased liver content of matriptase-2, indicating that the two proteins interact. To further characterize the role of matriptase-2, we investigated iron metabolism in mask mice fed experimental diets. Administration of iron-enriched diet increased liver iron stores as well as hepcidin expression. Treatment of iron-overloaded mask mice with erythropoietin increased hemoglobin and hematocrit, indicating that the response to erythropoietin is intact in mask mice. Feeding of an iron-deficient diet to mask mice significantly increased spleen weight as well as the splenic content of erythroferrone and transferrin receptor proteins, indicating stress erythropoiesis. Liver hepcidin expression was decreased; expression of Id1 was not changed. Overall, the results suggest a complex interaction between matriptase-2 and hemojuvelin, and demonstrate that hepcidin can to some extent be regulated even in the absence of matriptase-2 proteolytic activity.


Assuntos
Proteínas Ligadas por GPI/fisiologia , Proteína da Hemocromatose/fisiologia , Sobrecarga de Ferro/metabolismo , Proteínas de Membrana/fisiologia , Serina Endopeptidases/fisiologia , Animais , Proteína Morfogenética Óssea 6/biossíntese , Proteína Morfogenética Óssea 6/genética , Eritropoetina/farmacologia , Feminino , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína da Hemocromatose/biossíntese , Proteína da Hemocromatose/deficiência , Proteína da Hemocromatose/genética , Hepcidinas/biossíntese , Hepcidinas/genética , Proteína 1 Inibidora de Diferenciação/biossíntese , Proteína 1 Inibidora de Diferenciação/genética , Deficiências de Ferro , Ferro da Dieta/farmacologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Baço/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G560-G568, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29927322

RESUMO

Although the relationship between hereditary hemochromatosis and mutations in the HFE gene was discovered more than 20 years ago, information on the in vivo regulation of HFE protein expression is still limited. The purpose of the study was to determine the response of liver HFE protein content to iron deficiency in mice and rats by immunoblotting. Attempts to visualize the HFE protein in whole liver homogenates were unsuccessful; however, HFE could be detected in liver microsomes or in plasma membrane-enriched fractions. Five-week-old male C57BL/6 mice fed an iron-deficient diet for 4 wk presented with a significant decrease in liver iron content and liver Hamp expression, as well as with a significant decrease in liver HFE protein content. Rats fed an iron-deficient diet for 4 wk also displayed significant decrease in liver Hamp expression and liver HFE protein content. These results suggest that the downregulation of HFE-dependent signaling may contribute to decreased Hamp gene expression in states of prolonged iron deficiency. It has recently been proposed that HFE protein could be a potential target of matriptase-2, a hepatocyte protease mutated in iron-refractory iron deficiency anemia. However, immunoblot analysis of HFE protein in the livers from Tmprss6-mutated mask mice did not show evidence of matriptase-2-dependent HFE protein cleavage. In addition, no indication of HFE protein cleavage was seen in iron-deficient rats, whereas the full-length matriptase-2 protein content in the same animals was significantly increased. These results suggest that HFE is probably not a major physiological target of matriptase-2. NEW & NOTEWORTHY Feeding of iron-deficient diet for 4 wk decreased liver HFE protein content in both mice and rats, suggesting that decreased HFE-dependent signaling may contribute to hepcidin downregulation in iron deficiency. There was no difference in HFE protein band appearance between matriptase-2-mutated mask mice and wild-type mice, indicating that HFE is probably not a major physiological substrate of matriptase-2-mediated protease activity in vivo.


Assuntos
Anemia Ferropriva/metabolismo , Proteína da Hemocromatose/metabolismo , Deficiências de Ferro , Fígado/metabolismo , Anemia Ferropriva/genética , Animais , Feminino , Proteína da Hemocromatose/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
4.
Cell Physiol Biochem ; 46(6): 2601-2615, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29763890

RESUMO

BACKGROUND/AIMS: MiRNA-301a-3p is an oncogenic miRNA whose expression is associated with tumor development, metastases and overall poor prognosis. Estrogen receptor α (ERα) is one of the estrogen hormone-activated transcription factors, which regulates a large number of genes and is involved in the mammary gland development. Expression of ERα is considered to be a good indicator for endocrine therapy and breast cancer survival. Loss of ERα in breast cancer patients indicates invasiveness and poor prognosis. In this study, we focus on the regulation of ERα by miR-301a and its role in transition from estrogen-dependent to estrogen-independent breast cancer. METHODS: Expression of miR-301a-3p was measured by qRT-PCR in tumor tissue samples from 111 patients with primary breast carcinoma and in mammospheres representing in vitro model of cancer stem-like cells. Dual reporter luciferase assay and complementary experiments were performed to validate ESR1 as a direct target of miR-301a-3p. The effect of miR-301a-3p on estrogen signaling was evaluated on the level of gene and protein expression and growth response to estrogens. Finally, the effect of miR-301a-3p expression on tumor growth was studied in nude mice. RESULTS: We identified ESR1 as a direct target of miR-301a-3p. Ectopic miR-301a-3p causes a decrease in ESR1 mRNA and protein level and modulates the expression of ERα target genes in ERα positive breast cancer cells. Consistently, miR-301a-3p causes a decrease in sensitivity of MCF7 cells to 17ß-estradiol and inhibits the growth of estrogen dependent tumor in nude mice. Yet, the mice tumors have significantly increased expression of genes related to cancer stem-like cells and epithelial to mesenchymal transition suggesting enrichment of the population of cells with more invasive properties, in line with our observation that miR-301a-3p expression is highly increased in mammospheres which show a decrease in estrogenic signaling. Importantly, miR-301a-3P level is also increased in primary breast cancer samples exhibiting an ER/PR negative phenotype. CONCLUSION: Our results confirm ESR1 as a direct target of miR-301a-3p and suggest that miR-301a-3p likely contributes to development of estrogen independence, which leads to a more invasive phenotype of breast cancer.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais
5.
Blood Cells Mol Dis ; 64: 1-7, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282554

RESUMO

Erythroferrone (ERFE) and TMPRSS6 are important proteins in the regulation of iron metabolism. The objective of the study was to examine splenic ERFE and liver TMPRSS6 synthesis in rats treated with a combination of iron and erythropoietin (EPO). EPO was administered to female Wistar rats at 600U/day for four days, iron-pretreated rats received 150mg of iron before EPO treatment. Content of ERFE and TMPRSS6 proteins was determined by commercial antibodies. Iron pretreatment prevented the EPO-induced decrease in hepcidin expression. Content of phosphorylated SMAD 1,5,8 proteins was decreased in the liver by both EPO and iron plus EPO treatment. Fam132b expression in the spleen was increased both by EPO and iron plus EPO treatments; these treatments also significantly induced splenic Fam132a expression. ERFE protein content in the spleen was increased both by EPO and iron plus EPO to a similar extent. EPO administration increased TMPRSS6 content in the plasma membrane-enriched fraction of liver homogenate; in iron-pretreated rats, this increase was abolished. The results confirm that iron pretreatment prevents the EPO-induced decrease in liver Hamp expression. This effect probably occurs despite high circulating ERFE levels, since EPO-induced ERFE protein synthesis is not influenced by iron pretreatment.


Assuntos
Eritropoetina/farmacologia , Fígado/metabolismo , Hormônios Peptídicos/metabolismo , Serina Endopeptidases/metabolismo , Baço/metabolismo , Animais , Feminino , Ratos , Ratos Wistar
6.
ACS Infect Dis ; 10(2): 676-687, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38287902

RESUMO

Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.


Assuntos
Anti-Infecciosos , Ferro , Desferroxamina/química , Antiparasitários/farmacologia , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Mitocôndrias
7.
iScience ; 27(2): 109044, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38357661

RESUMO

Pancreatic cancer is a severe malignancy with increasing incidence and high mortality due to late diagnosis and low sensitivity to treatments. Search for the most appropriate drugs and therapeutic regimens is the most promising way to improve the treatment outcomes of the patients. This study aimed to compare (1) in vitro efficacy and (2) in vivo antitumor effects of conventional paclitaxel and the newly synthesized second (SB-T-1216) and third (SB-T-121605 and SB-T-121606) generation taxanes in KRAS wild type BxPC-3 and more aggressive KRAS G12V mutated Paca-44 pancreatic cancer cell line models. In vitro, paclitaxel efficacy was 27.6 ± 1.7 nM, while SB-Ts showed 1.7-7.4 times higher efficacy. Incorporation of SB-T-121605 and SB-T-121606 into in vivo therapeutic regimens containing paclitaxel was effective in suppressing tumor growth in Paca-44 tumor-bearing mice at small doses (≤3 mg/kg). SB-T-121605 and SB-T-121606 in combination with paclitaxel are promising candidates for the next phase of preclinical testing.

8.
Ther Adv Med Oncol ; 15: 17588359231197957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786538

RESUMO

Mitochondrially targeted anticancer drugs (mitocans) that disrupt the energy-producing systems of cancer are emerging as new potential therapeutics. Mitochondrially targeted tamoxifen (MitoTam), an inhibitor of mitochondrial respiration respiratory complex I, is a first-in-class mitocan that was tested in the phase I/Ib MitoTam-01 trial of patients with metastatic cancer. MitoTam exhibited a manageable safety profile and efficacy; among 37% (14/38) of responders, the efficacy was greatest in patients with metastatic renal cell carcinoma (RCC) with a clinical benefit rate of 83% (5/6) of patients. This can be explained by the preferential accumulation of MitoTam in the kidney tissue in preclinical studies. Here we report the mechanism of action and safety profile of MitoTam in a case series of RCC patients. All six patients were males with a median age of 69 years, who had previously received at least three lines of palliative systemic therapy and suffered progressive disease before starting MitoTam. We recorded stable disease in four, partial response in one, and progressive disease (PD) in one patient. The histological subtype matched clear cell RCC (ccRCC) in the five responders and claro-cellular carcinoma with sarcomatoid features in the non-responder. The number of circulating tumor cells (CTCs) was evaluated longitudinally to monitor disease dynamics. Beside the decreased number of CTCs after MitoTam administration, we observed a significant decrease of the mitochondrial network mass in enriched CTCs. Two patients had long-term clinical responses to MitoTam, of 50 and 36 weeks. Both patients discontinued treatment due to adverse events, not PD. Two patients who completed the trial in November 2019 and May 2020 are still alive without subsequent anticancer therapy. The toxicity of MitoTam increased with the dosage but was manageable. The efficacy of MitoTam in pretreated ccRCC patients is linked to the novel mechanism of action of this first-in-class mitochondrially targeted drug.

9.
J Biol Chem ; 286(5): 3717-28, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21059645

RESUMO

Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC(50) of 80 µM, whereas the electron transfer from CII to CIII was inhibited with IC(50) of 1.5 µM. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser(68) within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Complexo II de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Vitamina E/administração & dosagem , Animais , Antineoplásicos/farmacologia , Bovinos , Transporte de Elétrons , Humanos , Concentração Inibidora 50 , Células Jurkat , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase , Vitamina E/farmacologia
10.
Sci Rep ; 12(1): 17081, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224252

RESUMO

In humans, disruptions in the heme biosynthetic pathway are associated with various types of porphyrias, including variegate porphyria that results from the decreased activity of protoporphyrinogen oxidase IX (PPO; E.C.1.3.3.4), the enzyme catalyzing the penultimate step of the heme biosynthesis. Here we report the generation and characterization of human cell lines, in which PPO was inactivated using the CRISPR/Cas9 system. The PPO knock-out (PPO-KO) cell lines are viable with the normal proliferation rate and show massive accumulation of protoporphyrinogen IX, the PPO substrate. Observed low heme levels trigger a decrease in the amount of functional heme containing respiratory complexes III and IV and overall reduced oxygen consumption rates. Untargeted proteomics further revealed dysregulation of 22 cellular proteins, including strong upregulation of 5-aminolevulinic acid synthase, the major regulatory protein of the heme biosynthesis, as well as additional ten targets with unknown association to heme metabolism. Importantly, knock-in of PPO into PPO-KO cells rescued their wild-type phenotype, confirming the specificity of our model. Overall, our model system exploiting a non-erythroid human U-2 OS cell line reveals physiological consequences of the PPO ablation at the cellular level and can serve as a tool to study various aspects of dysregulated heme metabolism associated with variegate porphyria.


Assuntos
Oxirredutases , Porfiria Variegada , Ácido Aminolevulínico/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Heme , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Porfiria Variegada/genética , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Protoporfirinas
11.
Front Pharmacol ; 13: 971905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438837

RESUMO

Taxanes are widely used in the treatment of ovarian carcinomas. One of the main problems with conventional taxanes is the risk of development of multidrug resistance. New-generation synthetic experimental taxoids (Stony Brook Taxanes; SB-T) have shown promising effects against various resistant tumor models. The aim of our study was to compare the in vitro efficacy, intracellular content, and in vivo antitumor effect of clinically used paclitaxel (PTX) and SB-Ts from the previously tested second (SB-T-1214, SB-T-1216) and the newly synthesized third (SB-T-121402, SB-T-121605, and SB-T-121606) generation in PTX resistant ovarian carcinoma cells NCI/ADR-RES. The efficacy of the new SB-Ts was up to 50-times higher compared to PTX in NCI/ADR-RES cells in vitro. SB-T-121605 and SB-T-121606 induced cell cycle arrest in the G2/M phase much more effectively and their intracellular content was 10-15-times higher, when compared to PTX. Incorporation of SB-T-121605 and SB-T-121606 into therapeutic regimens containing PTX were effective in suppressing tumor growth in vivo in NCI/ADR-RES based mice xenografts at small doses (≤3 mg/kg), where their adverse effects were eliminated. In conclusion, new SB-T-121605 and SB-T-121606 analogs are promising candidates for the next phase of preclinical testing of their combination therapy with conventional taxanes in resistant ovarian carcinomas.

12.
Blood ; 113(3): 688-95, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18997172

RESUMO

Hepcidin plays a major role in the regulation of iron homeostasis. Several bone morphogenetic proteins (BMPs) are strong inducers of hepcidin (Hamp1, HAMP) expression. Hemojuvelin, a protein critical for maintaining appropriate levels of hepcidin, acts as a coreceptor for BMP2 and BMP4, thereby providing a link between iron homeostasis and the BMP-signaling pathway. We show that a robust BMP, hemojuvelin, and SMAD1 response by murine Hamp1 is dependent on a distal BMP responsive element (BMP-RE2), the adjacent bZIP, HNF4alpha/COUP binding sites, and plus or minus 50 bp of the flanking area within -1.6 to -1.7 kb of the Hamp1 promoter. Furthermore, the STAT site and the BMP responsive element (BMP-RE1) located in the proximal 260-bp region of the Hamp1 promoter are also indispensable for maximal activation of hepcidin transcription. The homologous motifs in the distal and proximal regions of the human HAMP promoter act in a manner similar to the murine Hamp1 promoter. Therefore, we propose that the regulation of hepcidin by the BMP pathway involves the formation of a complex of liver-specific and response-specific transcription factors bound to the distal BMP-RE2 /bZIP/HNF4alpha/COUP region and to the proximal BMP-RE1/STAT region possibly by physical association of the 2 regions.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Motivos de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição COUP/genética , Fatores de Transcrição COUP/metabolismo , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas Ligadas por GPI , Proteína da Hemocromatose , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo , Transfecção
13.
Cancer Res ; 81(9): 2289-2303, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33685989

RESUMO

Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.


Assuntos
Carcinogênese/efeitos dos fármacos , Desferroxamina/administração & dosagem , Quelantes de Ferro/administração & dosagem , Ferro/metabolismo , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Carga Tumoral/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Heme/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Neoplasias/patologia , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053908

RESUMO

The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid ß-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Doxiciclina/farmacologia , Sinergismo Farmacológico , Feminino , Gentisatos/química , Gentisatos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Mitocôndrias/patologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Quinases/genética , Ribossomos/efeitos dos fármacos
15.
Br J Haematol ; 147(4): 571-81, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19751239

RESUMO

Hepcidin, the master regulator of enteric iron absorption, is controlled by the opposing effects of pathways activated in response to iron excess or iron attenuation. Iron excess is regulated through a pathway involving the cell surface receptor hemojuvelin (HFE2) that stimulates expression of the hepcidin encoding gene (HAMP). Iron attenuation is countered through a pathway involving the hepatocyte-specific plasma membrane protease matriptase-2 encoded by TMPRSS6, leading to suppression of HAMP expression. The non-redundant function of hemojuvelin and matriptase-2 has been deduced from the phenotype imparted by mutations of HFE2 and TMPRSS6, which cause iron excess and iron deficiency respectively. Hemojuvelin is positioned to be the ideal substrate for matriptase-2. To examine the relationship between hemojuvelin and matriptase-2 in vivo, we crossed mice lacking the protease domain of matriptase-2 with mice lacking hemojuvelin. Mice lacking functional matriptase-2 and hemojuvelin exhibited low Hamp (Hamp1) expression, high serum and liver iron, and high transferrin saturation. Surprisingly, the double mutant mice also exhibited lower levels of iron in the heart compared to hemojuvelin-deficient mice, demonstrating a possible cardioprotective effect resulting from the loss of matriptase-2. This phenotype is consistent with hemojuvelin being a major substrate for matriptase-2/TMPRSS6 protease activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Sobrecarga de Ferro/genética , Proteínas de Membrana/deficiência , Serina Endopeptidases/deficiência , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Proteínas Morfogenéticas Ósseas/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Proteínas Ligadas por GPI , Proteína da Hemocromatose , Hepatócitos/efeitos dos fármacos , Hepcidinas , Interleucina-6/farmacologia , Ferro/análise , Ferro/sangue , Sobrecarga de Ferro/fisiopatologia , Ferro da Dieta/farmacologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , RNA Mensageiro/genética , Serina Endopeptidases/fisiologia , Transferrina/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Free Radic Biol Med ; 143: 510-521, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494243

RESUMO

Tamoxifen resistance remains a clinical obstacle in the treatment of hormone sensitive breast cancer. It has been reported that tamoxifen is able to target respiratory complex I within mitochondria. Therefore, we established two tamoxifen-resistant cell lines, MCF7 Tam5R and T47D Tam5R resistant to 5 µM tamoxifen and investigated whether tamoxifen-resistant cells exhibit mitochondrial changes which could help them survive the treatment. The function of mitochondria in this experimental model was evaluated in detail by studying i) the composition and activity of mitochondrial respiratory complexes; ii) respiration and glycolytic status; iii) mitochondrial distribution, dynamics and reactive oxygen species production. We show that Tam5R cells exhibit a significant decrease in mitochondrial respiration, low abundance of assembled mitochondrial respiratory supercomplexes, a more fragmented mitochondrial network connected with DRP1 Ser637 phosphorylation, higher glycolysis and sensitivity to 2-deoxyglucose. Tam5R cells also produce significantly higher levels of mitochondrial superoxide but at the same time increase their antioxidant defense (CAT, SOD2) through upregulation of SIRT3 and show phosphorylation of AMPK at Ser 485/491. Importantly, MCF7 ρ0 cells lacking functional mitochondria exhibit a markedly higher resistance to tamoxifen, supporting the role of mitochondria in tamoxifen resistance. We propose that reduced mitochondrial function and higher level of reactive oxygen species within mitochondria in concert with metabolic adaptations contribute to the phenotype of tamoxifen resistance.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Complexo I de Transporte de Elétrons/metabolismo , Glicólise , Mitocôndrias/patologia , Superóxidos/metabolismo , Tamoxifeno/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
PLoS One ; 14(4): e0215028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958854

RESUMO

Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content; subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen; pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation.


Assuntos
Eritropoese/efeitos dos fármacos , Eritropoetina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Hepcidinas/metabolismo , Deficiências de Ferro , Sobrecarga de Ferro/metabolismo , Proteínas Smad/metabolismo , Animais , Hepcidinas/genética , Ferro/administração & dosagem , Sobrecarga de Ferro/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Smad/genética
18.
Cell Metab ; 29(2): 399-416.e10, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30449682

RESUMO

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Pirimidinas/metabolismo , Animais , Linhagem Celular Tumoral , Respiração Celular , Di-Hidro-Orotato Desidrogenase , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Ubiquinona/metabolismo
19.
PLoS One ; 12(10): e0186844, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073189

RESUMO

Tmprss6-mutated mask mice display iron deficiency anemia and high expression of hepcidin. The aim of the study was to determine the effect of erythropoietin administration on proteins participating in the control of iron homeostasis in the liver and spleen in C57BL/6 and mask mice. Administration of erythropoietin for four days at 50 IU/mouse/day increased hemoglobin and hematocrit in C57BL/6 mice, no such increase was seen in mask mice. Erythropoietin administration decreased hepcidin expression in C57BL/6 mice, but not in mask mice. Erythropoietin treatment significantly increased the spleen size in both C57BL/6 and mask mice. Furthermore, erythropoietin administration increased splenic Fam132b, Fam132a and Tfr2 mRNA content. At the protein level, erythropoietin increased the amount of splenic erythroferrone and transferrin receptor 2 both in C57BL/6 and mask mice. Splenic ferroportin content was decreased in erythropoietin-treated mask mice in comparison with erythropoietin-treated C57BL/6 mice. In mask mice, the amount of liver hemojuvelin was decreased in comparison with C57BL/6 mice. The pattern of hemojuvelin cleavage was different between C57BL/6 and mask mice: In both groups, a main hemojuvelin band was detected at approximately 52 kDa; in C57BL/6 mice, a minor cleaved band was seen at 47 kDa. In mask mice, the 47 kDa band was absent, but additional minor bands were detected at approximately 45 kDa and 48 kDa. The results provide support for the interaction between TMPRSS6 and hemojuvelin in vivo; they also suggest that hemojuvelin could be cleaved by another as yet unknown protease in the absence of functional TMPRSS6. The lack of effect of erythropoietin on hepcidin expression in mask mice can not be explained by changes in erythroferrone synthesis, as splenic erythroferrone content increased after erythropoietin administration in both C57BL/6 and mask mice.


Assuntos
Citocinas/metabolismo , Eritropoetina/farmacologia , Hepcidinas/metabolismo , Ferro/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Ligação a RNA/genética , Serina Endopeptidases/genética , Animais , Citocinas/genética , Eritropoetina/genética , Proteínas Ligadas por GPI , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteína da Hemocromatose , Hepcidinas/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Mutantes , Proteínas Musculares/genética , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/genética , Proteínas de Ligação a RNA/metabolismo , Serina Endopeptidases/metabolismo , Baço/metabolismo , Baço/patologia
20.
Sci Rep ; 7: 44497, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295025

RESUMO

The development of drug resistance is a major problem which often occurs during anticancer chemotherapies. Photodynamic therapy (PDT) has been studied as an alternative treatment modality for drug-resistant tumors, however the question of resistance to PDT and potential cross-resistance with chemotherapy has yet to be fully answered. To investigate the mechanism of resistance to PDT, we developed an in vitro experimental model system in a mouse mammary carcinoma cell line 4T1. We used two ethylene glycol derivatives of tetraphenylporphyrin, and tetraphenylchlorin derivative, temoporfin, as photosensitizers (PS). PDT-resistant clones were obtained by exposure to a set concentration of PS followed by irradiation with increasing light doses. PDT resistance to soluble glycol porphyrins was mediated mainly by increased drug efflux through ABCB1 (P-glycoprotein) as we demonstrated by specific ABCB1 knockdown experiments, which in turn rescued the sensitivity of resistant cells to PDT. In contrast, resistance raised to temoporfin, which is generally more lipophilic than glycol porphyrins, elicited mechanism based on sequestration of the drug to lysosomes. The resistance that is acquired from a particular PS could be overcome by using a different PS, which is not susceptible to the same mechanism(s) of resistance. Elucidation of the underlying mechanisms in various types of resistance might facilitate improvements in PDT treatment design.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Mamárias Animais/tratamento farmacológico , Mesoporfirinas/administração & dosagem , Animais , Etilenoglicóis/administração & dosagem , Etilenoglicóis/química , Feminino , Técnicas de Silenciamento de Genes , Glicóis/química , Humanos , Células MCF-7 , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Mesoporfirinas/química , Camundongos , Paclitaxel/efeitos adversos , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Porfirinas/administração & dosagem , Porfirinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA