Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(11): 2919-2923, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341408

RESUMO

We report the spectroscopic characterization of protonated monosilanol (SiH3 OH2+ ) isolated in the gas phase, thus providing the first experimental determination of the structure and bonding of a member of the elusive silanol family. The SiH3 OH2+ ion is generated in a silane/water plasma expansion, and its structure is derived from the IR photodissociation (IRPD) spectrum of its Ar cluster measured in a tandem mass spectrometer. The chemical bonding in SiH3 OH2+ is analyzed by density functional theory (DFT) calculations, providing detailed insight into the nature of the dative H3 Si+ -OH2 bond. Comparison with protonated methanol illustrates the differences in bonding between carbon and silicon, which are mainly related to their different electronegativity and the different energy of the vacant valence pz orbital of SiH3+ and CH3+ .

2.
Phys Chem Chem Phys ; 17(29): 18961-70, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26126445

RESUMO

The effects of doping bare silicon clusters with carbon on their physical properties are of fundamental interest for the chemistry of the interstellar medium and the development of novel nanostructures in materials science. Carbon-doped silicon clusters (SinC, n = 3-8) are characterized in the gas phase with infrared-ultraviolet two-color ionization (IR-UV2CI) spectroscopy, mass spectrometry, and quantum chemical calculations. Structural identification is achieved by comparing the measured and calculated vibrational absorption spectra of the low-energy SinC isomers identified by global optimization algorithms. Except for planar Si3C, the most stable SinC clusters have three-dimensional configurations. While the Si3C and Si6C structures are uniquely assigned, several stable isomers of Si4C, Si5C, Si7C, and Si8C may co-exist under the present experimental conditions. Interestingly, some of the structures observed here are different from the ground state structures predicted previously. For the small neutral clusters (n ≤ 5), structures similar to those reported previously for the anions are observed. The highly stable Si3C unit with a nearly linear Si-C-Si motif is identified as characteristic building block in several of the most stable SinC structures. In all identified structures, a large negative charge of almost -2e is located on the C atom, indicating its role as electron donor in the Sin host moiety. The B3LYP/cc-pVTZ level proves reliable in finding the experimentally observed isomers.

3.
Phys Chem Chem Phys ; 16(40): 22364-72, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25223425

RESUMO

Neutral silicon clusters doped with first row elements (Si6X) have been generated (X = B, C, N, O) and characterized by infrared-ultraviolet (IR-UV) two-photon resonance-enhanced ionization spectroscopy (X = C, O) and quantum chemical calculations (X = Be, B, C, N, O, Si). In the near threshold UV photoionization, the ion signal of specific cluster sizes can be significantly enhanced by resonant excitation with tunable IR light prior to UV irradiation, allowing for the measurement of the IR spectra of Si7, Si6C, and Si6O clusters. Structural assignments are achieved with the help of a global optimization procedure using density functional theory (DFT). The most stable calculated structures show the best agreement between predicted and measured spectra. The dopant atoms in the Si6X clusters have a negative net charge and the Si atoms act as electron donors within the clusters. Moreover, the overall structures of the Si6X clusters depend strongly on the nature of the dopant atom, i.e., its size and valency. While in some of the Si6X clusters one Si atom in Si7 is simply substituted by the dopant atom (X = Be, B, C), other cases exhibit a completely different geometry (X = N, O). As a general trend, doping of the Si7 cluster with first-row dopants is predicted to shift the optically allowed electronic transitions into the visible or even near-IR spectral range due to symmetry reduction or the radical character of the doped cluster.


Assuntos
Berílio/química , Boro/química , Carbono/química , Nitrogênio/química , Oxigênio/química , Silício/química , Estrutura Molecular , Fótons , Teoria Quântica , Análise Espectral , Vibração
4.
Artigo em Inglês | MEDLINE | ID: mdl-36900919

RESUMO

This study investigated the associations between heatwaves and daily hospital admissions for cardiovascular and respiratory diseases in two provinces in Viet Nam known to be vulnerable to droughts during 2010-2018. This study applied a time series analysis with data extracted from the electronic database of provincial hospitals and meteorological stations from the corresponding province. To eliminate over-dispersion, this time series analysis used Quasi-Poisson regression. The models were controlled for the day of the week, holiday, time trend, and relative humidity. Heatwaves were defined as the maximum temperature exceeding P90th over the period from 2010 to 2018 during at least three consecutive days. Data from 31,191 hospital admissions for respiratory diseases and 29,056 hospitalizations for cardiovascular diseases were investigated in the two provinces. Associations between hospital admissions for respiratory diseases and heatwaves in Ninh Thuan were observed at lag 2, with excess risk (ER = 8.31%, 95% confidence interval: 0.64-16.55%). However, heatwaves were negatively associated with cardiovascular diseases in Ca Mau, which was determined amongst the elderly (age above 60), ER = -7.28%, 95%CI: -13.97--0.08%. Heatwaves can be a risk factor for hospital admission due to respiratory diseases in Vietnam. Further studies need to be conducted to assert the link between heat waves and cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Idoso , Vietnã , Fatores de Tempo , Hospitalização , Hospitais , Temperatura Alta
5.
Sci Rep ; 8(1): 16693, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420602

RESUMO

Coherent diffraction imaging (CDI) or lensless X-ray microscopy has become of great interest for high spatial resolution imaging of, e.g., nanostructures and biological specimens. There is no optics required in between an object and a detector, because the object can be fully recovered from its far-field diffraction pattern with an iterative phase retrieval algorithm. Hence, in principle, a sub-wavelength spatial resolution could be achieved in a high-numerical aperture configuration. With the advances of ultrafast laser technology, high photon flux tabletop Extreme Ultraviolet (EUV) sources based on the high-order harmonic generation (HHG) have become available to small-scale laboratories. In this study, we report on a newly established high photon flux and highly monochromatic 30 nm HHG beamline. Furthermore, we applied ptychography, a scanning CDI version, to probe a nearly periodic nanopattern with the tabletop EUV source. A wide-field view of about 15 × 15 µm was probed with a 2.5 µm-diameter illumination beam at 30 nm. From a set of hundreds of far-field diffraction patterns recorded for different adjacent positions of the object, both the object and the illumination beams were successfully reconstructed with the extended ptychographical iterative engine. By investigating the phase retrieval transfer function, a diffraction-limited resolution of reconstruction of about 32 nm is obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA