Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant J ; 108(1): 231-243, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309934

RESUMO

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Assuntos
Locos de Características Quantitativas/genética , Sorghum/genética , Produtos Agrícolas , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Fenótipo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento
2.
Plant Physiol ; 186(2): 1240-1253, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33729516

RESUMO

The extra-large guanosine-5'-triphosphate (GTP)-binding protein 2, XLG2, is an unconventional Gα subunit of the Arabidopsis (Arabidopsis thaliana) heterotrimeric GTP-binding protein complex with a major role in plant defense. In vitro biochemical analyses and molecular dynamic simulations show that affinity of XLG2 for GTP is two orders of magnitude lower than that of the conventional Gα, AtGPA1. Here we tested the physiological relevance of GTP binding by XLG2. We generated an XLG2(T476N) variant with abolished GTP binding, as confirmed by in vitro GTPγS binding assay. Yeast three-hybrid, bimolecular fluorescence complementation, and split firefly-luciferase complementation assays revealed that the nucleotide-depleted XLG2(T476N) retained wild-type XLG2-like interactions with the Gßγ dimer and defense-related receptor-like kinases. Both wild-type and nucleotide-depleted XLG2(T476N) restored the defense responses against Fusarium oxysporum and Pseudomonas syringae compromised in the xlg2 xlg3 double mutant. Additionally, XLG2(T476N) was fully functional restoring stomatal density, root growth, and sensitivity to NaCl, but failed to complement impaired germination and vernalization-induced flowering. We conclude that XLG2 is able to function in a GTP-independent manner and discuss its possible mechanisms of action.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fusarium/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Arabidopsis/enzimologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Guanosina Trifosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Doenças das Plantas/microbiologia
3.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769272

RESUMO

Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gß and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gßγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Animais , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Proteínas de Plantas/genética , Plantas/genética
4.
Plant Physiol ; 170(2): 1117-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26668332

RESUMO

Heterotrimeric G proteins composed of α, ß, and γ subunits are central signal transducers mediating the cellular response to multiple stimuli in most eukaryotes. Gγ subunits provide proper cellular localization and functional specificity to the heterotrimer complex. Plant Gγ subunits, divided into three structurally distinct types, are more diverse than their animal counterparts. Type B Gγ subunits, lacking a carboxyl-terminal isoprenylation motif, are found only in flowering plants. We present the functional characterization of type B Gγ subunit (SlGGB1) in tomato (Solanum lycopersicum). We show that SlGGB1 is the most abundant Gγ subunit in tomato and strongly interacts with the Gß subunit. Importantly, the green fluorescent protein-SlGGB1 fusion protein as well as the carboxyl-terminal yellow fluorescent protein-SlGGB1/amino-terminal yellow fluorescent protein-Gß heterodimer were localized in the plasma membrane, nucleus, and cytoplasm. RNA interference-mediated silencing of SlGGB1 resulted in smaller seeds, higher number of lateral roots, and pointy fruits. The silenced lines were hypersensitive to exogenous auxin, while levels of endogenous auxins were lower or similar to those of the wild type. SlGGB1-silenced plants also showed strong hyposensitivity to abscisic acid (ABA) during seed germination but not in other related assays. Transcriptome analysis of the transgenic seeds revealed abnormal expression of genes involved in ABA sensing, signaling, and response. We conclude that the type B Gγ subunit SlGGB1 mediates auxin and ABA signaling in tomato.


Assuntos
Ácido Abscísico/farmacologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais , Ácido Abscísico/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Frutas/anatomia & histologia , Frutas/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Proteínas Heterotriméricas de Ligação ao GTP/genética , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Subunidades Proteicas/genética , Sementes/anatomia & histologia , Sementes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Plant J ; 81(3): 388-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25430066

RESUMO

Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex comprises one Gα, one Gß, and one Gγ subunit. However, in addition to the canonical Gγ subunits (class A), plants also possess two unusual, plant-specific classes of Gγ subunits (classes B and C) that have not yet been found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (class B), which is important for membrane anchoring of the protein; the presence of such subunits gives rise to a flexible sub-population of Gß/γ heterodimers that are not necessarily restricted to the plasma membrane. Plants also contain class C Gγ subunits, which are twice the size of canonical Gγ subunits, with a predicted transmembrane domain and a large cysteine-rich extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology have been unequivocally demonstrated. Here, we provide compelling evidence that AGG3, a class C Gγ subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Membrana Celular/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/análise , Subunidades gama da Proteína de Ligação ao GTP/genética , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de Proteína
6.
Plant Physiol ; 167(3): 1004-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25588736

RESUMO

In animals, heterotrimeric G proteins, comprising Ga, Gb, and Gg subunits, are molecular switches whose function tightly depends on Ga and Gbg interaction. Intriguingly, in Arabidopsis (Arabidopsis thaliana), multiple defense responses involve Gbg, but not Ga. We report here that the Gbg dimer directly partners with extra-large G proteins (XLGs) to mediate plant immunity. Arabidopsis mutants deficient in XLGs, Gb, and Gg are similarly compromised in several pathogen defense responses, including disease development and production of reactive oxygen species. Genetic analysis of double, triple, and quadruple mutants confirmed that XLGs and Gbg functionally interact in the same defense signaling pathways. In addition, mutations in XLG2 suppressed the seedling lethal and cell death phenotypes of BRASSINOSTEROID INSENSITIVE1-associated receptor kinase1-interacting receptor-like kinase1 mutants in an identical way as reported for Arabidopsis Gb-deficient mutants. Yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescent complementation assays revealed that XLG2 physically interacts with all three possible Gbg dimers at the plasma membrane. Phylogenetic analysis indicated a close relationship between XLGs and plant Ga subunits, placing the divergence point at the dawn of land plant evolution. Based on these findings, we conclude that XLGs form functional complexes with Gbg dimers, although the mechanism of action of these complexes, including activation/deactivation, must be radically different form the one used by the canonical Ga subunit and are not likely to share the same receptors. Accordingly, XLGs expand the repertoire of heterotrimeric G proteins in plants and reveal a higher level of diversity in heterotrimeric G protein signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Imunidade Vegetal , Morte Celular , Núcleo Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Mutação/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Filogenia , Ligação Proteica , Multimerização Proteica , Explosão Respiratória , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Especificidade da Espécie , Frações Subcelulares/metabolismo
7.
Genes (Basel) ; 15(1)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255003

RESUMO

Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gß, and Gγ. In Arabidopsis, the Gßγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gß exhibit constitutively active defense responses, suggesting a contrasting negative role for Gß in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gßγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gßγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution.


Assuntos
Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Solanum lycopersicum , Arabidopsis/genética , Morte Celular/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Apoptose/genética , Nicotiana , Solanum lycopersicum/genética
8.
Plant Physiol ; 159(3): 975-83, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22570469

RESUMO

The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) Gß-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of Gß-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Agricultura , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Flagelina/farmacologia , Glucose/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Dobramento de Proteína/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos
9.
Plant J ; 67(5): 840-51, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21575088

RESUMO

Currently, there are strong inconsistencies in our knowledge of plant heterotrimeric G-proteins that suggest the existence of additional members of the family. We have identified a new Arabidopsis G-protein γ-subunit (AGG3) that modulates morphological development and ABA-regulation of stomatal aperture. AGG3 strongly interacts with the Arabidopsis G-protein ß-subunit in vivo and in vitro. Most importantly, AGG3-deficient mutants account for all but one of the 'orphan' phenotypes previously unexplained by the two known γ-subunits in Arabidopsis. AGG3 has unique characteristics never before observed in plant or animal systems, such as its size (more than twice that of canonical γ-subunits) and the presence of a C-terminal Cys-rich domain. AGG3 thus represent a novel class of G-protein γ-subunits, widely spread throughout the plant kingdom but not present in animals. Homologues of AGG3 in rice have been identified as important quantitative trait loci for grain size and yield, but due to the atypical nature of the proteins their identity as G-protein subunits was thus far unknown. Our work demonstrates a similar trend in seeds of Arabidopsis agg3 mutants, and implicates G-proteins in such a crucial agronomic trait. The discovery of this highly atypical subunit reinforces the emerging notion that plant and animal G-proteins have distinct as well as shared evolutionary pathways.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , DNA Complementar/genética , Flores/crescimento & desenvolvimento , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Germinação , Hipocótilo/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Mapeamento de Interação de Proteínas , RNA/genética , Proteínas Recombinantes de Fusão , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Alinhamento de Sequência , Transdução de Sinais
10.
Planta ; 235(3): 615-27, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22002625

RESUMO

Heterotrimeric G proteins are integral components of signal transduction in humans and other mammals and have been therefore extensively studied. However, while they are known to mediate many processes, much less is currently known about the effector pathways and molecular mechanisms used by these proteins to regulate effectors in plants. We designed a complementation strategy to study G protein signaling in Arabidopsis thaliana, particularly the mechanism of action of AGB1, the sole identified ß subunit. We used biochemical and effector regulation data from human G protein studies to identify four potentially important residues for site-directed mutagenesis (T65, M111, D250 and W361 of AGB1). Each residue was individually mutated and the resulting mutated protein introduced in the agb1-2 mutant background under the control of the native AGB1 promoter. Interestingly, even though these mutations have been shown to have profound effects on effector signaling in humans, all the mutated subunits were able to restore thirteen of the fifteen Gß-deficient phenotypes characterized in this study. Only one mutated protein, T65A was unable to complement the hypersensitivity to mannitol during germination observed in agb1 mutants; while only D250A failed to restore lateral root numbers in the agb1 mutant to wild-type levels. Our results suggest that the mechanisms used in mammalian G protein signaling are not well conserved in plant G protein signaling, and that either the effectors used by plant G proteins, or the mechanisms used to activate them, are at least partially divergent from the well-studied mammalian G proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Fusarium/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/genética , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Mol Syst Biol ; 7: 532, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21952135

RESUMO

The heterotrimeric G-protein complex is minimally composed of Gα, Gß, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Parede Celular , Proteínas de Ligação ao GTP/metabolismo , Glicômica , Proteômica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Bases de Dados Genéticas , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Teste de Complementação Genética , Genótipo , Imunoprecipitação , Morfogênese/genética , Fenótipo , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/genética , Técnicas do Sistema de Duplo-Híbrido
12.
Plant Direct ; 5(11): e359, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765865

RESUMO

Heterotrimeric G protein Gß-deficient mutants in rice and maize display constitutive immune responses, whereas Arabidopsis Gß mutants show impaired defense, suggesting the existence of functional differences between monocots and dicots. Using CRISPR/Cas9, we produced one hemizygous tomato line with a mutated SlGB1 Gß gene. Homozygous slgb1 knockout mutants exhibit all the hallmarks of autoimmune mutants, including development of necrotic lesions, constitutive expression of defense-related genes, and high endogenous levels of salicylic acid (SA) and reactive oxygen species, resulting in early seedling lethality. Virus-induced silencing of Gß in cotton reproduced the symptoms observed in tomato mutants, confirming that the autoimmune phenotype is not limited to monocot species but is also shared by dicots. Even though multiple genes involved in SA and ethylene signaling are highly induced by Gß silencing in tomato and cotton, co-silencing of SA or ethylene signaling components in cotton failed to suppress the lethal phenotype, whereas co-silencing of the oxidative burst oxidase RbohD can repress lethality. Despite the autoimmune response observed in slgb1 mutants, we show that SlGB1 is a positive regulator of the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in tomato. We speculate that the phenotypic differences observed between Arabidopsis and tomato/cotton/rice/maize Gß knockouts do not necessarily reflect divergences in G protein-mediated defense mechanisms.

13.
Sci Signal ; 14(695)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376571

RESUMO

In animals, endocytosis of a seven-transmembrane GPCR is mediated by arrestins to propagate or arrest cytoplasmic G protein-mediated signaling, depending on the bias of the receptor or ligand, which determines how much one transduction pathway is used compared to another. In Arabidopsis thaliana, GPCRs are not required for G protein-coupled signaling because the heterotrimeric G protein complex spontaneously exchanges nucleotide. Instead, the seven-transmembrane protein AtRGS1 modulates G protein signaling through ligand-dependent endocytosis, which initiates derepression of signaling without the involvement of canonical arrestins. Here, we found that endocytosis of AtRGS1 initiated from two separate pools of plasma membrane: sterol-dependent domains and a clathrin-accessible neighborhood, each with a select set of discriminators, activators, and candidate arrestin-like adaptors. Ligand identity (either the pathogen-associated molecular pattern flg22 or the sugar glucose) determined the origin of AtRGS1 endocytosis. Different trafficking origins and trajectories led to different cellular outcomes. Thus, in this system, compartmentation with its associated signalosome architecture drives biased signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arrestinas , Endocitose , Proteínas de Ligação ao GTP , Proteínas RGS , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta-Arrestinas
14.
Plant J ; 58(1): 69-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19054360

RESUMO

Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gß (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gß-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gß- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gß-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gß acts upstream of COI1 and ATMYC2 in JA signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Resistência à Doença , Fusarium/patogenicidade , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Alternaria/imunologia , Alternaria/patogenicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Defensinas/genética , Defensinas/metabolismo , Etilenos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Genes de Plantas , Proteínas Heterotriméricas de Ligação ao GTP/genética , Interações Hospedeiro-Patógeno , Mutação , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Tempo
15.
Sci Signal ; 12(606)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690635

RESUMO

Heterotrimeric guanine nucleotide-binding proteins (G proteins), which are composed of α, ß, and γ subunits, are versatile, guanine nucleotide-dependent, molecular on-off switches. In animals and fungi, the exchange of GDP for GTP on Gα controls G protein activation and is crucial for normal cellular responses to diverse extracellular signals. The model plant Arabidopsis thaliana has a single canonical Gα subunit, AtGPA1. We found that, in planta, the constitutively active, GTP-bound AtGPA1(Q222L) mutant and the nucleotide-free AtGPA1(S52C) mutant interacted with Gßγ1 and Gßγ2 dimers with similar affinities, suggesting that G protein heterotrimer formation occurred independently of nucleotide exchange. In contrast, AtGPA1(Q222L) had a greater affinity than that of AtGPA1(S52C) for Gßγ3, suggesting that the GTP-bound conformation of AtGPA1(Q222L) is distinct and tightly associated with Gßγ3. Functional analysis of transgenic lines expressing either AtGPA1(S52C) or AtGPA1(Q222L) in the gpa1-null mutant background revealed various mutant phenotypes that were complemented by either AtGPA1(S52C) or AtGPA1(Q222L). We conclude that, in addition to the canonical GDP-GTP exchange-dependent mechanism, plant G proteins can function independently of nucleotide exchange.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Mutação de Sentido Incorreto , Plantas Geneticamente Modificadas/genética
16.
Front Chem ; 4: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252940

RESUMO

G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs from the accepted animal paradigm.

17.
Methods Mol Biol ; 1363: 145-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26577787

RESUMO

Protein-protein interaction studies provide useful insights into biological processes taking place within the living cell. A number of techniques are available to unravel large structural protein complexes, functional protein modules, and temporary protein associations occurring during signal transduction. The choice of method depends on the nature of the proteins and the interaction being studied. Here we present an optimized and simplified yeast three-hybrid method for analysis of protein interactions involving three components.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Técnicas do Sistema de Duplo-Híbrido , Ligação Proteica , Proteínas/metabolismo , Transdução de Sinais
18.
Plant Signal Behav ; 11(8): e1212798, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27454415

RESUMO

Heterotrimeric G-proteins, consisting of Gα, Gß and Gγ subunits, are important signal transducers in eukaryotes. In plants, G-protein-mediated signaling contributes to defense against a range of fungal and bacterial pathogens. Here we studied response of G-protein-deficient mutants to ssRNA viruses representing 2 different families: Cucumber mosaic virus (CMV) (Bromoviridae) and Turnip mosaic virus (TuMV) (Potyviridae). We found that development of spreading necrosis on infected plants was suppressed in the Gß-deficient mutant (agb1-2) compared to wild type and Gα-deficient mutant (gpa1-4). In accordance, ion leakage caused by viral infection was also significantly reduced in agb1-2 compared to wild type and gpa1-4. Nevertheless, both viruses replicated better in agb1-2 plants, while gpa1-4 was similar to wild type. Analysis of pathogenesis-related genes showed that Gß negatively regulated salicylic acid, jasmonic acid and abscisic acid marker genes during CMV and TuMV infections. Interestingly, analysis of salicylic acid deficient transgenic plants indicated that salicylic acid did not affect resistance against these viruses and did not influence the Gß-mediated defense response. We conclude that heterotrimeric G-proteins play a positive role in defense against viral pathogens probably by promoting cell death.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cucumovirus/patogenicidade , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Heterotriméricas de Ligação ao GTP/genética , Tymovirus/patogenicidade
19.
Methods Mol Biol ; 1363: 219-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26577793

RESUMO

Studying the natural defense mechanisms developed by model plants such as Arabidopsis is an important approach towards the improvement of crop species. The availability of mutants as well as the relative easiness to silence any gene in Arabidopsis provides an invaluable source of genotypes that can be used to discover new elements involved in the defense response. Here we describe simple and reliable methods to evaluate susceptibility/resistance to the pathogenic fungus Alternaria brassicicola and the viral pathogen Turnip mosaic virus.


Assuntos
Alternaria , Resistência à Doença , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Potyvirus , Alternaria/genética , Alternaria/isolamento & purificação , Suscetibilidade a Doenças , Fenótipo , Potyvirus/genética , Potyvirus/isolamento & purificação
20.
Sci Signal ; 9(446): ra93, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27649740

RESUMO

Signaling proteins evolved diverse interactions to provide specificity for distinct stimuli. Signaling complexity in the G protein (heterotrimeric guanosine triphosphate-binding protein) network was achieved in animals through subunit duplication and incremental evolution. By combining comprehensive and quantitative phenotypic profiles of Arabidopsis thaliana with protein evolution informatics, we found that plant heterotrimeric G protein machinery evolved by a saltational (jumping) process. Sequence similarity scores mapped onto tertiary structures, and biochemical validation showed that the extra-large Gα (XLG) subunit evolved extensively in the charophycean algae (an aquatic green plant) by gene duplication and gene fusion. In terrestrial plants, further evolution uncoupled XLG from its negative regulator, regulator of G protein signaling, but preserved an α-helix region that enables interaction with its partner Gßγ. The ancestral gene evolved slowly due to the molecular constraints imposed by the need for the protein to maintain interactions with various partners, whereas the genes encoding XLG proteins evolved rapidly to produce three highly divergent members. Analysis of A. thaliana mutants indicated that these Gα and XLG proteins all function with Gßγ and evolved to operate both independently and cooperatively. The XLG-Gßγ machinery specialized in environmental stress responses, whereas the canonical Gα-Gßγ retained developmental roles. Some developmental processes, such as shoot development, involve both Gα and XLG acting cooperatively or antagonistically. These extensive and rapid evolutionary changes in XLG structure compared to those of the canonical Gα subunit contrast with the accepted notion of how pathway diversification occurs through gene duplication with subsequent incremental coevolution of residues among interacting proteins.


Assuntos
Evolução Molecular , Proteínas de Ligação ao GTP/genética , Marchantia/genética , Picea/genética , Pinus taeda/genética , Proteínas de Plantas/genética , Transdução de Sinais/fisiologia , Arabidopsis , Proteínas de Ligação ao GTP/metabolismo , Humanos , Marchantia/metabolismo , Picea/metabolismo , Pinus taeda/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA