Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Methods ; 14(41): 4113-4121, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36214083

RESUMO

Room temperature NH3 gas sensors composed of noble metal (Au, Ag or Pt)/polythiophene/reduced graphene oxide (Au, Ag or Pt/PTh/rGO) ternary nanocomposite films were fabricated using a simple one-pot redox reaction. The surface morphology and composition of Au, Ag or Pt/PTh/rGO ternary nanocomposite films were analyzed using Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films, obviously bright Au nanoparticles were observed on the surface of the massive lamination PTh film which wrapped the rGO, and encapsulated Au nanoparticles were observed in the Au/PTh/rGO film. Comparative gas sensing results showed that the Au/PTh/rGO ternary nanocomposite film had the highest response compared with Ag/PTh/rGO and Pt/PTh/rGO ternary nanocomposite films at room temperature, especially when the testing concentration of NH3 gas was below 5 ppm. The Au/PTh/rGO ternary nanocomposite film also had a fast response time and good reproducibility. The combination of the high catalytic activity of naked Au nanoparticles and the formation of effective carrier transfer channels by encapsulated Au nanoparticles was responsible for the improved response of the Au/PTh/rGO ternary nanocomposite film.

2.
ACS Appl Mater Interfaces ; 12(8): 9755-9765, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32013376

RESUMO

The emergence of self-healing devices in recent years has drawn a great amount of attention in both academics and industry. Self-healed devices can autonomically restore a rupture as unexpected destruction occurs, which can efficiently prolong the life span of the devices; hence, they have an enhanced durability and decreased replacement cost. As a result, integration of wearable devices with self-healed electronics has become an indispensable issue in smart wearable devices. In this study, we present the first self-powered, self-healed, and wearable ultraviolet (UV) photodetector based on the integration of agarose/poly(vinyl alcohol) (PVA) double network (DN) hydrogels, which have the advantages of good mechanical strength, self-healing ability, and tolerability of multiple types of damage. With the integration of a DN hydrogel substrate, the photodetector enables 90% of the initial efficiency to be restored after five healing cycles, and each rapid healing time is suppressed to only 10 s. The proposed device has several merits, including having an all spray coating, self-sustainability, biocompatibility, good sensitivity, mechanical flexibility, and an outstanding healing ability, which are all essential to build smart electronic systems. The unprecedented self-healed photodetector expands the future scope of electronic skin design, and it also offers a new platform for the development of next-generation wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA