Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(23): e202203040, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36593580

RESUMO

Recently, the fields of organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs) have improved tremendously with regard to tunable emission, efficiency, brightness, and thermal stability. Imidazole derivatives are excellent deep blue-green light-emitting layers in the OLED or LEC devices. This Review summarizes the major breakthroughs of various electroluminescence (EL) layers with imidazole-containing organic or organometallic derivatives, the molecular design principles, and their light-emitting performances as effective EL materials. The highly tunable chemical structures and flexible molecular design strategies of imidazole-based compounds are advantages that provide great opportunities for researchers. They can provide a good basis for the design and development of new EL materials with narrower emission and higher efficiency. Moreover, imidazole compounds have demonstrated breakthrough performances in thermally activated delayed fluorescence (TADF) properties where triplet excitons are utilized to inhibit anti-intersystem quenching, showing great promise in breaking the theoretical external quantum efficiencies (EQE) limits in traditional fluorescent devices.

2.
Chemistry ; 28(1): e202102966, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766387

RESUMO

In recent years, owing to the demand for high-efficiency phosphorescent organic light-emitting devices (PhOLEDs), many studies have been conducted on the development of bipolar host materials. A series of imidazolyl-phenylcarbazole-based host materials, i. e., im-CzP, im-CzPCz, im-CzPtBu, and im-OCzP, were synthesized to obtain high-efficiency green and red-emitting PhOLEDs. With im-OCzP as the host, satisfactory peak efficiencies of 22.2 (77.0 cd A-1 and 93.1 lm W-1 ) and 14.1 % (9.0 cd A-1 and 10.1 lm W-1 ) could be obtained, respectively. To further improve the performance of the devices, an electron transport material, bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine (B3PyMPM) was selected to construct a co-hosted system. The efficiency of im-OCzP combined with B3PyMPM forming co-hosts could also achieve high values of 23.0 (80.0 cd A-1 and 98.8 lm W-1 ) and 16.5 % (10.2 cd A-1 and 13.4 lm W-1 ) for green and red PhOLEDs, respectively. These results exhibited that the proposed bipolar hosts have great flexibility in adjusting the carrier balance of EML in OLEDs, demonstrating their ingenious design and high potential.

3.
Chemistry ; 25(72): 16699-16711, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31638288

RESUMO

A series of donor-acceptor-donor triazine-based molecules with thermally activated delayed fluorescence (TADF) properties were synthesized to obtain highly efficient blue-emitting OLEDs with non-doped emitting layers (EMLs). The targeted molecules use a triazine core as the electron acceptor, and a benzene ring as the conjugated linker with different electron donors to alternate the energy level of the HOMO to further tune the emission color. The introduction of long alkyl chains on the triazine core inhibits the unwanted intermolecular D-D/A-A-type π-π interactions, resulting in the intermolecular D-A charge transfer. The weak aggregation-caused quenching (ACQ) effect caused by the suppressed intermolecular D-D/A-A-type π-π interaction further enhances the emission. The crowded molecular structure allows the electron donor and acceptor to be nearly orthogonal, thereby reducing the energy gap between triplet and singlet excited states (ΔEST ). As a result, blue-emitting devices with TH-2DMAC and TH-2DPAC non-doped EMLs showed satisfactory efficiencies of 12.8 % and 15.8 %, respectively, which is one of the highest external quantum efficiency (EQEs) reported for blue TADF emitters (λpeak <475 nm), demonstrating that our tailored molecular designs are promising strategies to endow OLEDs with excellent electroluminescent performances.

4.
Nat Mater ; 8(1): 68-75, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19060890

RESUMO

Highly ordered nanostructured organic/inorganic hybrids offer chemical tunability, novel functionalities and enhanced performance over their individual components. Hybrids of complementary p-type organic and n-type inorganic components have attracted interest in optoelectronics, where high-efficiency devices with minimal cost are desired. We demonstrate here self-assembly of a lamellar hybrid containing periodic and alternating 1-nm-thick sheets of polycrystalline ZnO separated by 2-3 nm layers of conjugated molecules, directly onto an electrode. Initially the electrodeposited inorganic is Zn(OH)(2), but pi-pi interactions among conjugated molecules stabilize synergistically the periodic nanostructure as it converts to ZnO at 150 degrees C. As photoconductors, normalized detectivities (D(*)) greater than 2x10(10) Jones, photocurrent gains of 120 at 1.2 V microm(-1) and dynamic ranges greater than 60 dB are observed on selective excitation of the organic. These are among the highest values measured for organic, hybrid and amorphous silicon, making them technologically competitive as low-power, wavelength-tunable, flexible and environmentally benign photoconductors.

5.
Res Microbiol ; 165(1): 21-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161484

RESUMO

Serratia marcescens swarms on 0.8% LB agar at 30 °C but not at 37 °C. To understand the molecular mechanism regulating Serratia swarming, transposon mutagenesis was performed to screen for mutants that swarmed at 37 °C. In one mutant, S. marcescens WW100, the transposon was inserted in the upstream region of manA, which encodes mannose-6-phosphate isomerase, a type I phosphomannose isomerase. The transcriptional and translational levels of manA were higher in S. marcescens WW100 than in the wild-type strain. S. marcescens WW100 produced more serrawettin W1 (biosurfactant) than the wild-type, as detected by thin-layer chromatography, to promote surface motility by reducing surface tension. Serratia swarming was previously shown to be negatively regulated by the RssA-RssB two-component system. An electrophoretic mobility shift assay (EMSA) indicated that phosphorylated RssB (the response regulator) binds upstream of the transposon insertion site and manA in S. marcescens WW100. Analysis by real-time RT-PCR (qRT-PCR) revealed that, compared to the wild-type level, manA mRNA was increased in the rssA deletion mutant. The results indicated that RssA-RssB signaling directly represses the expression of manA and that overexpression of manA increases the production of serrawettin for Serratia swarming at 37 °C.


Assuntos
Proteínas de Bactérias/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Serratia marcescens/fisiologia , Transdução de Sinais , Sequência de Bases , Sítios de Ligação , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Manose/metabolismo , Manose-6-Fosfato Isomerase/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutagênese , Ligação Proteica
6.
ACS Nano ; 6(3): 2032-40, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22397738

RESUMO

One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%.


Assuntos
Fontes de Energia Elétrica , Nanofios/química , Energia Solar , Condutividade Elétrica , Microscopia de Força Atômica , Tiofenos/química
7.
Chem Commun (Camb) ; 48(78): 9711-3, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22914175

RESUMO

The self-assembly of oligothiophene-peptide conjugates can be directed through the systematic variation of the peptide sequence into different nanostructures, including flat spicules, nanotubes, spiral sheets, and giant, flat sheets. Furthermore, the assembly of these molecules is not controlled by steric interactions between the amino acid side chains.


Assuntos
Aminoácidos/química , Peptídeos/química , Tiofenos/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Nanoestruturas/química
8.
J Phys Chem B ; 114(45): 14778-86, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698523

RESUMO

Conjugated organic molecules can be designed to self-assemble from solution into nanostructures for functions such as charge transport, light emission, or light harvesting. We report here the design and synthesis of a novel hairpin-shaped self-assembling molecule containing electronically active sexithiophene moieties. In several nonpolar organic solvents, such as toluene or chlorocyclohexane, this compound was found to form organogels composed of nanofibers with uniform diameters of 3.0 (±0.3) nm. NMR analysis and spectroscopic measurements revealed that the self-assembly is driven by π-π interactions of the sexithiophene moieties and hydrogen bonding among the amide groups at the head of the hairpin. Field effect transistors built with this molecule revealed p-type semiconducting behavior and higher hole mobilities when films were cast from solvents that promote self-assembly. We propose that hydrogen bonding and π-π stacking act synergistically to create ordered stacking of sexithiophene moieties, thus providing an efficient pathway for charge carriers within the nanowires. The nanostructures formed exhibit unusually broad absorbance in their UV-vis spectrum, which we attribute to the coexistence of both H and J aggregates from face-to-face π-π stacking of sexithiophene moieties and hierarchical bundling of the nanowires. The large absorption range associated with self-assembly of the hairpin molecules makes them potentially useful in light harvesting for energy applications.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Nanofios/química , Semicondutores , Tiofenos/química , Eletroquímica , Transporte de Elétrons , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA