RESUMO
In a previous study, two proteins identified as hyaluronidases were detected in spent media by MS and found to be in greater quantity in the sarA and sarA agr mutant strains when compared with the parent and agr mutant strains of Staphylococcus aureus UAMS-1. In the present study, spent media and total RNA were isolated from UAMS-1 and its regulatory mutants and analysed for hyaluronidase activity and steady-state hyaluronidase (hysA) RNA message levels. Hyaluronidase activity was observed throughout all time points examined regardless of the regulatory effects of sarA and agr but activity was always substantially higher in the sarA and sarA agr mutant strains than in the UAMS-1 parent and agr mutant strains. Northern analysis did not detect hysA message for either the UAMS-1 parent or the agr mutant strains at any time point examined, while steady-state hysA message levels were detected throughout growth for the sarA mutant strain, but only at exponential and early post-exponential growth for the sarA agr mutant strain. An in vitro biofilm plate assay, pre-coated with human plasma as a source of hyaluronic acid, demonstrated no significant increase in biofilm for a sarA mutant strain of S. aureus UAMS-1 defective in hyaluronidase activity when compared with the sarA mutant strain. These data indicate that, while hysA message levels and hyaluronidase activity are elevated in the sarA mutant strains of S. aureus UAMS-1, the increase in activity did not contribute to the biofilm-negative phenotype observed in the sarA mutant strain of S. aureus UAMS-1.
Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Hialuronoglucosaminidase/metabolismo , Mutação , Staphylococcus aureus/crescimento & desenvolvimento , Transativadores/genética , Proteínas de Bactérias/metabolismo , Humanos , Hialuronoglucosaminidase/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Transativadores/metabolismoRESUMO
Recent studies have demonstrated a role for Staphylococcus aureus cidA-mediated cell lysis and genomic DNA release in biofilm adherence. The current study extends these findings by examining both temporal and additional genetic factors involved in the control of genomic DNA release and degradation during biofilm maturation. Cell lysis and DNA release were found to be critical for biofilm attachment during the initial stages of development and the released DNA (eDNA) remained an important matrix component during biofilm maturation. This study also revealed that an lrgAB mutant exhibits increased biofilm adherence and matrix-associated eDNA consistent with its proposed role as an inhibitor of cidA-mediated lysis. In flow-cell assays, both cid and lrg mutations had dramatic effects on biofilm maturation and tower formation. Finally, staphylococcal thermonuclease was shown to be involved in biofilm development as a nuc mutant formed a thicker biofilm containing increased levels of matrix-associated eDNA. Together, these findings suggest a model in which the opposing activities of the cid and lrg gene products control cell lysis and genomic DNA release during biofilm development, while staphylococcal thermonuclease functions to degrade the eDNA, possibly as a means to promote biofilm dispersal.
Assuntos
Biofilmes/crescimento & desenvolvimento , DNA/metabolismo , Staphylococcus aureus/metabolismo , Aderência Bacteriana , Desoxirribonuclease I/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Nuclease do Micrococo/metabolismo , Mutação , Plasmídeos/metabolismo , Fatores de TempoRESUMO
Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin) that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases). Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results demonstrate that the inability of a sarA mutant to repress production of extracellular nuclease and multiple proteases have independent but cumulative effects that make a significant contribution to the biofilm-deficient phenotype of an S. aureus sarA mutant.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Mutação , Staphylococcus aureus/fisiologia , Acetoína/metabolismo , Animais , Butileno Glicóis/metabolismo , Sobrevivência Celular , Teste de Complementação Genética , Nuclease do Micrococo/metabolismo , Fenótipo , Inibidores de Proteases/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismoRESUMO
To investigate the regulatory role of traP (target of RNAIII-activating peptide) in Staphylococcus aureus, we generated traP mutations in the clinical isolates UAMS-1 and USA300. In neither case did mutation of traP affect expression of the accessory gene regulator (agr) or the ability to form a biofilm. We were also unable to confirm that mutation of traP in the prototype 8325-4 laboratory strain RN6390 results in reduced expression of agr, reduced hemolytic activity, or an altered capacity to form a biofilm.