Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G147-G157, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37129245

RESUMO

Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model. Although the overwhelming majority of global homozygous midnolin knockout mice demonstrated embryonic lethality, heterozygous knockout mice were observed to be similar to wild-type mice in their viability and were used to determine the effect of reduced midnolin expression on NAFLD. We found that global heterozygous midnolin knockout attenuated the severity of NAFLD in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism. Collectively, our results support a role for midnolin in regulating cholesterol/lipid metabolism in the liver. Thus, midnolin may represent a novel therapeutic target for NAFLD. Finally, our observation that midnolin was essential for survival underscores the broad importance of this gene beyond its role in liver biology.NEW & NOTEWORTHY We have developed and now report on the first functional global midnolin knockout mouse model. We found that global heterozygous midnolin knockout attenuated the severity of nonalcoholic fatty liver disease (NAFLD) in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Frutose/metabolismo , Dieta Hiperlipídica/métodos , Fígado/metabolismo , Colesterol/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 110(44): 17892-7, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24114270

RESUMO

Ten eleven translocation (TET) enzymes (TET1/TET2/TET3) and thymine DNA glycosylase (TDG) play crucial roles in early embryonic and germ cell development by mediating DNA demethylation. However, the molecular mechanisms that regulate TETs/TDG expression and their role in cellular differentiation, including that of the pancreas, are not known. Here, we report that (i) TET1/2/3 and TDG can be direct targets of the microRNA miR-26a, (ii) murine TETs, especially TET2 and TDG, are down-regulated in islets during postnatal differentiation, whereas miR-26a is up-regulated, (iii) changes in 5-hydroxymethylcytosine accompany changes in TET mRNA levels, (iv) these changes in mRNA and 5-hydroxymethylcytosine are also seen in an in vitro differentiation system initiated with FACS-sorted adult ductal progenitor-like cells, and (v) overexpression of miR-26a in mice increases postnatal islet cell number in vivo and endocrine/acinar colonies in vitro. These results establish a previously unknown link between miRNAs and TET expression levels, and suggest a potential role for miR-26a and TET family proteins in pancreatic cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ilhotas Pancreáticas/fisiologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Citosina/análogos & derivados , Dioxigenases , Citometria de Fluxo , Ilhotas Pancreáticas/enzimologia , Luciferases , Camundongos , Camundongos Transgênicos , Microfluídica , Reação em Cadeia da Polimerase em Tempo Real
3.
Proc Natl Acad Sci U S A ; 109(51): 20853-8, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213213

RESUMO

One of the hurdles for practical application of induced pluripotent stem cells (iPSC) is the low efficiency and slow process of reprogramming. Octamer-binding transcription factor 4 (Oct4) has been shown to be an essential regulator of embryonic stem cell (ESC) pluripotency and key to the reprogramming process. To identify small molecules that enhance reprogramming efficiency, we performed a cell-based high-throughput screening of chemical libraries. One of the compounds, termed Oct4-activating compound 1 (OAC1), was found to activate both Oct4 and Nanog promoter-driven luciferase reporter genes. Furthermore, when added to the reprogramming mixture along with the quartet reprogramming factors (Oct4, Sox2, c-Myc, and Klf4), OAC1 enhanced the iPSC reprogramming efficiency and accelerated the reprogramming process. Two structural analogs of OAC1 also activated Oct4 and Nanog promoters and enhanced iPSC formation. The iPSC colonies derived using the Oct4-activating compounds along with the quartet factors exhibited typical ESC morphology, gene-expression pattern, and developmental potential. OAC1 seems to enhance reprogramming efficiency in a unique manner, independent of either inhibition of the p53-p21 pathway or activation of the Wnt-ß-catenin signaling. OAC1 increases transcription of the Oct4-Nanog-Sox2 triad and Tet1, a gene known to be involved in DNA demethylation.


Assuntos
Benzamidas/farmacologia , Reprogramação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Piridinas/farmacologia , Pirróis/farmacologia , Animais , Benzamidas/química , Diferenciação Celular , Química Farmacêutica/métodos , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Desenho de Fármacos , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Oxigenases de Função Mista , Proteína Homeobox Nanog , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/química , Pirróis/química , Fatores de Transcrição SOXB1/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(13): 5394-9, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19282474

RESUMO

Multidrug resistance continues to be a major impediment to successful chemotherapy in cancer patients. One cause of multidrug resistance is enhanced expression of the mdr1 gene, but the precise factors and physiological conditions controlling mdr1 expression are not entirely known. To gain a better understanding of mdr1 transcriptional regulation, we created a unique mouse model that allows noninvasive bioimaging of mdr1 gene expression in vivo and in real time. The model uses a firefly luciferase (fLUC) gene inserted by homologous recombination into the murine mdr1a genetic locus. The inserted fLUC gene is preceded by a neo expression cassette flanked by loxP sites, so that Cre-mediated recombination is required to configure the fLUC gene directly under the control of the endogenous mdr1a promoter. We now demonstrate that the mdr1a.fLUC knock-in is a faithful reporter for mdr1a expression in naive animals, in which fLUC mRNA levels and luminescence intensities accurately parallel endogenous mdr1a mRNA expression. We also demonstrate xenobiotic-inducible regulation of mdr1a.fLUC expression in real time, in parallel with endogenous mdr1a expression, resulting in a more detailed understanding of the kinetics of mdr1a gene induction. This mouse model demonstrates the feasibility of using bioimaging coupled with Cre/loxP conditional knock-in to monitor regulated gene expression in vivo. It represents a unique tool with which to study the magnitude and kinetics of mdr1a induction under a variety of physiologic, pharmacologic, genetic, and environmental conditions.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/análise , Diagnóstico por Imagem/métodos , Expressão Gênica , Animais , Técnicas de Introdução de Genes , Integrases , Cinética , Luciferases de Vaga-Lume/genética , Medições Luminescentes , Camundongos , Modelos Animais , Distribuição Tecidual , Ativação Transcricional
5.
Mol Cell Biol ; 24(11): 4791-800, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15143173

RESUMO

A approximately 2.4-kb imprinting control region (ICR) regulates somatic monoallelic expression of the Igf2 and H19 genes. This is achieved through DNA methylation-dependent chromatin insulator and promoter silencing activities on the maternal and paternal chromosomes, respectively. In somatic cells, the hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites and blocks activity of the proximal Igf2 promoter by insulating it from its distal enhancers. CTCF binding is thought to play a direct role in inhibiting methylation of the ICR in female germ cells and in somatic cells and, therefore, in establishing and maintaining imprinting of the Igf2/H19 region. Here, we report on the effects of eliminating ICR CTCF binding by severely mutating all four sites in mice. We found that in the female and male germ lines, the mutant ICR remained hypomethylated and hypermethylated, respectively, showing that the CTCF binding sites are dispensable for imprinting establishment. Postfertilization, the maternal mutant ICR acquired methylation, which could be explained by loss of methylation inhibition, which is normally provided by CTCF binding. Adjacent regions in cis-the H19 promoter and gene-also acquired methylation, accompanied by downregulation of H19. This could be the result of a silencing effect of the methylated maternal ICR.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , RNA não Traduzido/biossíntese , RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Metilação de DNA , Regulação da Expressão Gênica/fisiologia , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Mutação , Ligação Proteica , RNA Longo não Codificante
6.
Cancer Res ; 65(1): 92-8, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15665283

RESUMO

The human Ras association domain family 1 (RASSF1) gene is located at 3p21.3 in an area that is believed to harbor at least one important tumor suppressor gene. The two major isoforms of RASSF1, RASSF1A and RASSF1C, are distinguished by alternative NH(2)-terminal exons and the two transcripts initiate in two separate CpG islands. RASSF1A is one of the most frequently inactivated genes described thus far in human solid tumors. Inactivation of RASSF1A most commonly involves methylation of the promoter and CpG island associated with the RASSF1A isoform. In contrast, RASSF1C is almost never inactivated in tumors. Here, we have derived Rassf1a knockout mice in which exon 1-alpha of the Rassf1 gene was deleted, leading to specific loss of Rassf1a but not Rassf1c transcripts. Rassf1a-targeted mice were viable and fertile. Rassf1a(-/-) mice were prone to spontaneous tumorigenesis in advanced age (18-20 months). Whereas only two tumors developed in 48 wild-type mice, six tumors were found in 35 Rassf1a(+/-) mice (P < 0.05) and thirteen tumors were found in 41 Rassf1a(-/-) mice (P < 0.001). The tumors in Rassf1a-targeted mice included lung adenomas, lymphomas, and one breast adenocarcinoma. Rassf1a(-/-) and wild-type mice were treated with two chemical carcinogens, benzo(a)pyrene and urethane, to induce skin tumors and lung tumors, respectively. Rassf1a(-/-) and Rassf1a(+/-) mice showed increased tumor multiplicity and tumor size relative to control animals. The data are consistent with the tumor-suppressive role of Rassf1a, which may explain its frequent epigenetic inactivation in human tumors.


Assuntos
Predisposição Genética para Doença , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Adenocarcinoma/genética , Animais , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA , Genótipo , Neoplasias Pulmonares/genética , Linfoma/genética , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
PLoS One ; 5(9): e12630, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20838620

RESUMO

BACKGROUND: The H19/Igf2 imprinting control region (ICR) functions as an insulator exclusively in the unmethylated maternal allele, where enhancer-blocking by CTCF protein prevents the interaction between the Igf2 promoter and the distant enhancers. DNA methylation inhibits CTCF binding in the paternal ICR allele. Two copies of the chicken ß-globin insulator (ChßGI)(2) are capable of substituting for the enhancer blocking function of the ICR. Insulation, however, now also occurs upon paternal inheritance, because unlike the H19 ICR, the (ChßGI)(2) does not become methylated in fetal male germ cells. The (ChßGI)(2) is a composite insulator, exhibiting enhancer blocking by CTCF and chromatin barrier functions by USF1 and VEZF1. We asked the question whether these barrier proteins protected the (ChßGI)(2) sequences from methylation in the male germ line. METHODOLOGY/PRINCIPAL FINDINGS: We genetically dissected the ChßGI in the mouse by deleting the binding sites USF1 and VEZF1. The methylation of the mutant versus normal (ChßGI)(2) significantly increased from 11% to 32% in perinatal male germ cells, suggesting that the barrier proteins did have a role in protecting the (ChßGI)(2) from methylation in the male germ line. Contrary to the H19 ICR, however, the mutant (mChßGI)(2) lacked the potential to attain full de novo methylation in the germ line and to maintain methylation in the paternal allele in the soma, where it consequently functioned as a biallelic insulator. Unexpectedly, a stricter enhancer blocking was achieved by CTCF alone than by a combination of the CTCF, USF1 and VEZF1 sites, illustrated by undetectable Igf2 expression upon paternal transmission. CONCLUSIONS/SIGNIFICANCE: In this in vivo model, hypomethylation at the ICR position together with fetal growth retardation mimicked the human Silver-Russell syndrome. Importantly, late fetal/perinatal death occurred arguing that strict biallelic insulation at the H19/Igf2 ICR position is not tolerated in development.


Assuntos
Morte Fetal/genética , Retardo do Crescimento Fetal/genética , Impressão Genômica , Elementos Isolantes , Fator de Crescimento Insulin-Like II/genética , RNA não Traduzido/genética , Animais , Sequência de Bases , Fator de Ligação a CCCTC , Galinhas , Metilação de DNA , Feminino , Morte Fetal/metabolismo , Retardo do Crescimento Fetal/metabolismo , Marcação de Genes , Células Germinativas/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Longo não Codificante , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Globinas beta/genética
8.
Genesis ; 32(3): 199-202, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11892008

RESUMO

A Cre recombinase expression cassette was inserted into the X-linked Hprt locus by gene targeting in a mouse embryonic stem (ES) cell line isogenic to strain 129S1/SvImJ (129S1), then the transgene was introduced into 129S1 mice through ES cell chimeras. When females hemizygous for this transgene were mated to males carrying a neomycin selection cassette flanked by loxP sites, the cassette was always excised regardless of Cre inheritance and without detectable mosaicism. The usefulness of this "Cre-deleter" transgenic line is in its efficiency and defined genetic status in terms of mouse strain and location of the transgene.


Assuntos
Integrases/genética , Camundongos Transgênicos , Proteínas Virais/genética , Animais , Feminino , Hipoxantina Fosforribosiltransferase/genética , Masculino , Camundongos , Camundongos Endogâmicos
9.
Development ; 129(4): 897-904, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11861473

RESUMO

Imprinting of the mouse insulin-like growth factor 2 (Igf2) and H19 genes is regulated by an imprinting control region (ICR). The hypomethylated maternal copy functions as a chromatin insulator through the binding of CTCF and prevents Igf2 activation in cis, while hypermethylation of the paternal copy inactivates insulator function and leads to inactivation of H19 in cis. The specificity of the ICR sequence for mediating imprinting and chromatin insulation was investigated by substituting it for two copies of the chicken beta-globin insulator element, (Ch beta GI)(2), in mice. This introduced sequence resembles the ICR in size, and in containing CTCF-binding sites and CpGs, but otherwise lacks homology. On maternal inheritance, the (Ch beta GI)(2) was hypomethylated and displayed full chromatin insulator activity. Monoallelic expression of Igf2 and H19 was retained and mice were of normal size. These results suggest that the ICR sequence, aside from CTCF-binding sites, is not uniquely specialized for chromatin insulation at the Igf2/H19 region. On paternal inheritance, the (Ch beta GI)(2) was also hypomethylated and displayed strong insulator activity--fetuses possessed very low levels of Igf2 RNA and were greatly reduced in size, being as small as Igf2-null mutants. Furthermore, the paternal H19 allele was active. These results suggest that differential ICR methylation in the female and male germ lines is not acquired through differential binding of CTCF. Rather, it is likely to be acquired through a separate or downstream process.


Assuntos
Cromatina/fisiologia , Impressão Genômica , Globinas/genética , Fator de Crescimento Insulin-Like II/genética , RNA não Traduzido/genética , Animais , Galinhas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Estrutura Terciária de Proteína , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA