Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Physiol ; 192(4): 3049-3068, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37073492

RESUMO

NLP7 (NIN-LIKE-PROTEIN 7) is the major transcriptional factor responsible for the primary nitrate response (PNR), but the role of its homolog, NLP6, in nitrogen signaling and the interplay between NLP6 and NLP7 remain to be elucidated. In this study, we show that, like NLP7, nuclear localization of NLP6 via a nuclear retention mechanism is nitrate dependent, but nucleocytosolic shuttling of both NLP6 and NLP7 is independent of each other. Compared with single mutants, the nlp6nlp7 double mutant displays a synergistic growth retardation phenotype in response to nitrate. The transcriptome analysis of the PNR showed that NLP6 and NLP7 govern ∼50% of nitrate-induced genes, with cluster analysis highlighting 2 distinct patterns. In the A1 cluster, NLP7 plays the major role, whereas in the A2 cluster, NLP6 and NLP7 are partially functionally redundant. Interestingly, comparing the growth phenotype and PNR under high- and low-nitrate conditions demonstrated that NLP6 and NLP7 exert a more dominant role in the response to high nitrate. Apart from nitrate signaling, NLP6 and NLP7 also participated in high ammonium conditions. Growth phenotypes and transcriptome data revealed that NLP6 and NLP7 are completely functionally redundant and may act as repressors in response to ammonium. Other NLP family members also participated in the PNR, with NLP2 and NLP7 acting as broader regulators and NLP4, -5, -6, and -8 regulating PNR in a gene-dependent manner. Thus, our findings indicate that multiple modes of interplay exist between NLP6 and NLP7 that differ depending on nitrogen sources and gene clusters.


Assuntos
Compostos de Amônio , Proteínas de Arabidopsis , Arabidopsis , Nitratos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 33(5): 1492-1505, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33580260

RESUMO

Compared with root development regulated by external nutrients, less is known about how internal nutrients are monitored to control plasticity of shoot development. In this study, we characterize an Arabidopsis thaliana transceptor, NRT1.13 (NPF4.4), of the NRT1/PTR/NPF family. Different from most NRT1 transporters, NRT1.13 does not have the conserved proline residue between transmembrane domains 10 and 11; an essential residue for nitrate transport activity in CHL1/NRT1.1/NPF6.3. As expected, when expressed in oocytes, NRT1.13 showed no nitrate transport activity. However, when Ser 487 at the corresponding position was converted back to proline, NRT1.13 S487P regained nitrate uptake activity, suggesting that wild-type NRT1.13 cannot transport nitrate but can bind it. Subcellular localization and ß-glucuronidase reporter analyses indicated that NRT1.13 is a plasma membrane protein expressed at the parenchyma cells next to xylem in the petioles and the stem nodes. When plants were grown with a normal concentration of nitrate, nrt1.13 showed no severe growth phenotype. However, when grown under low-nitrate conditions, nrt1.13 showed delayed flowering, increased node number, retarded branch outgrowth, and reduced lateral nitrate allocation to nodes. Our results suggest that NRT1.13 is required for low-nitrate acclimation and that internal nitrate is monitored near the xylem by NRT1.13 to regulate shoot architecture and flowering time.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/fisiologia , Nitratos/farmacologia , Brotos de Planta/anatomia & histologia , Animais , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Domínio MADS/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Fatores de Tempo , Xenopus , Xilema/metabolismo
3.
Cell ; 138(6): 1184-94, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19766570

RESUMO

Ions serve as essential nutrients in higher plants and can also act as signaling molecules. Little is known about how plants sense changes in soil nutrient concentrations. Previous studies showed that T101-phosphorylated CHL1 is a high-affinity nitrate transporter, whereas T101-dephosphorylated CHL1 is a low-affinity transporter. In this study, analysis of an uptake- and sensing-decoupled mutant showed that the nitrate transporter CHL1 functions as a nitrate sensor. Primary nitrate responses in CHL1T101D and CHLT101A transgenic plants showed that phosphorylated and dephosphorylated CHL1 lead to a low- and high-level response, respectively. In vitro and in vivo studies showed that, in response to low nitrate concentrations, protein kinase CIPK23 can phosphorylate T101 of CHL1 to maintain a low-level primary response. Thus, CHL1 uses dual-affinity binding and a phosphorylation switch to sense a wide range of nitrate concentrations in the soil, thereby functioning as an ion sensor in higher plants. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
5.
Nature ; 497(7447): 60-6, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23636397

RESUMO

With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas/metabolismo , Abastecimento de Alimentos/estatística & dados numéricos , Proteínas de Membrana Transportadoras/metabolismo , Alumínio/toxicidade , Transporte Biológico , Parede Celular/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Engenharia Genética , Humanos , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Nitratos/metabolismo , Valor Nutritivo , Fosfatos/metabolismo , Saúde Pública , Salinidade , Sódio/toxicidade , Solo/química , Sacarose/metabolismo , Zinco/metabolismo
7.
New Phytol ; 216(4): 1205-1222, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28850721

RESUMO

Plants have evolved sophisticated mechanisms to adapt to fluctuating environmental nitrogen availability. However, more underlying genes regulating the response to nitrate have yet to be characterized. We report here the identification of a nitrate regulatory mutant whose mutation mapped to the Cleavage and Polyadenylation Specificity Factor 30 gene (CPSF30-L). In the mutant, induction of nitrate-responsive genes was inhibited independent of the ammonium conditions and was restored by expression of the wild-type 65 kDa encoded by CPSF30-L. Molecular and genetic evidence suggests that CPSF30-L works upstream of NRT1.1 and independently of NLP7 in response to nitrate. Analysis of the 3'-UTR of NRT1.1 showed that the pattern of polyadenylation sites was altered in the cpsf30 mutant. Transcriptome analysis revealed that four nitrogen-related clusters were enriched in the differentially expressed genes of the cpsf30 mutant. Nitrate uptake was decreased in the mutant along with reduced expression of the nitrate transporter/sensor gene NRT1.1, while nitrate reduction and amino acid content were enhanced in roots along with increased expression of several nitrate assimilatory genes. These findings indicate that the 65 kDa protein encoded by CPSF30-L mediates nitrate signaling in part by regulating NRT1.1 expression, thus adding an important component to the nitrate signaling network.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
8.
J Exp Bot ; 68(10): 2603-2609, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369493

RESUMO

Nitrogen, an essential macronutrient for plants, regulates many aspects of plant growth and development. Nitrate is one of the major forms of nitrogen taken up by plants from the soil. Nitrate and nitrogen have been reported to regulate flowering; while some studies have shown that lower nitrate/nitrogen promoted flowering, others have reported the opposite trend. To elucidate how nitrate/nitrogen affects flowering, we reviewed the existing literature and conducted experiments to examine flowering time under a wide range of nitrate concentrations using two growth systems. From the literature review and our experiments, we established that differing nitrate availability results in a U-shaped flowering curve, with an optimal concentration of nitrate facilitating flowering and concentrations above or below this optimal concentration delaying flowering. The role of nitrate and nitrogen in regulating flowering has been elucidated by several transcriptomic and mutant studies, which have suggested close interactions between nitrate/nitrogen, phosphate, the circadian clock, photosynthesis, and, potentially, hormones. We discuss several possible molecular mechanisms underlying the U-shaped flowering response.


Assuntos
Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Nitratos/metabolismo , Nitrogênio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/metabolismo
11.
Plant Physiol ; 163(2): 844-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24006285

RESUMO

This study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth. Functional analysis in Xenopus laevis oocytes showed that both NRT1.11 and NRT1.12 are low-affinity nitrate transporters. Quantitative reverse transcription-polymerase chain reaction and immunoblot analysis showed higher expression of these two genes in larger expanded leaves. Green fluorescent protein and ß-glucuronidase reporter analyses indicated that NRT1.11 and NRT1.12 are plasma membrane transporters expressed in the companion cells of the major vein. In nrt1.11 nrt1.12 double mutants, more root-fed (15)NO3(-) was translocated to mature and larger expanded leaves but less to the youngest tissues, suggesting that NRT1.11 and NRT1.12 are required for transferring root-derived nitrate into phloem in the major veins of mature and larger expanded leaves for redistributing to the youngest tissues. Distinct from the wild type, nrt1.11 nrt1.12 double mutants show no increase of plant growth at high nitrate supply. These data suggested that NRT1.11 and NRT1.12 are involved in xylem-to-phloem transfer for redistributing nitrate into developing leaves, and such nitrate redistribution is a critical step for optimal plant growth enhanced by increasing external nitrate.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Nitratos/metabolismo , Floema/metabolismo , Desenvolvimento Vegetal , Xilema/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , DNA Bacteriano/genética , Cinética , Mutagênese Insercional/genética , Mutação/genética , Transportadores de Nitrato , Nitratos/farmacologia , Floema/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transporte Proteico/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Xilema/efeitos dos fármacos
12.
Plant Cell ; 23(5): 1945-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21571952

RESUMO

This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and ß-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular , Regulação da Expressão Gênica de Plantas , Genes Reporter , Mutação , Transportadores de Nitrato , Nitratos/análise , Fenótipo , Raízes de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/ultraestrutura , Protoplastos , Xenopus laevis/genética , Xenopus laevis/metabolismo , Xilema/metabolismo
13.
Nat Plants ; 9(5): 803-816, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055555

RESUMO

The photorespiratory intermediate glycerate is known to be shuttled between the peroxisome and chloroplast. Here, localization of NPF8.4 in the tonoplast, together with the reduced vacuolar glycerate content displayed by an npf8.4 mutant and the glycerate efflux activity detected in an oocyte expression system, identifies NPF8.4 as a tonoplast glycerate influx transporter. Our study shows that expression of NPF8.4 and most photorespiration-associated genes, as well as the photorespiration rate, is upregulated in response to short-term nitrogen (N) depletion. We report growth retardation and early senescence phenotypes for npf8.4 mutants specifically upon N depletion, suggesting that the NPF8.4-mediated regulatory pathway for sequestering the photorespiratory carbon intermediate glycerate in vacuoles is important to alleviate the impact of an increased C/N ratio under N deficiency. Thus, our study of NPF8.4 reveals a novel role for photorespiration in N flux to cope with short-term N depletion.


Assuntos
Luz , Fotossíntese , Fotossíntese/fisiologia , Vacúolos/metabolismo , Cloroplastos/metabolismo , Fenótipo , Proteínas de Membrana Transportadoras/metabolismo
14.
Plant Cell ; 21(9): 2750-61, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19734434

RESUMO

Several quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization. Immunoblots, quantitative RT-PCR, beta-glucuronidase reporter analysis, and immunolocalization indicated that NRT1.7 is expressed in the phloem of the leaf minor vein and that its expression levels increase coincidentally with the source strength of the leaf. In nrt1.7 mutants, more nitrate was present in the older leaves, less (15)NO(3)(-) spotted on old leaves was remobilized into N-demanding tissues, and less nitrate was detected in the phloem exudates of old leaves. These data indicate that NRT1.7 is responsible for phloem loading of nitrate in the source leaf to allow nitrate transport out of older leaves and into younger leaves. Interestingly, nrt1.7 mutants showed growth retardation when external nitrogen was depleted. We conclude that (1) nitrate itself, in addition to organic forms of nitrogen, is remobilized, (2) nitrate remobilization is important to sustain vigorous growth during nitrogen deficiency, and (3) source-to-sink remobilization of nitrate is mediated by phloem.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Floema/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transportadores de Nitrato , Floema/genética , RNA de Plantas/genética , Especificidade por Substrato
15.
Plant J ; 57(2): 264-78, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18798873

RESUMO

Nitrate, the major nitrogen source for most plants, is not only a nutrient but also a signaling molecule. For almost two decades, it has been known that nitrate can rapidly induce transcriptional expression of several nitrate-related genes, a process that is referred to as the primary nitrate response. However, little is known about how plants actually sense nitrate and how the signal is transmitted in this pathway. In this study, a calcineurin B-like (CBL) -interacting protein kinase (CIPK) gene, CIPK8, was found to be involved in early nitrate signaling. CIPK8 expression was rapidly induced by nitrate. Analysis of two independent knockout mutants and a complemented line showed that CIPK8 positively regulates the nitrate-induced expression of primary nitrate response genes, including nitrate transporter genes and genes required for assimilation. Kinetic analysis of nitrate induction levels of these genes in wild-type plants indicated that there are two response phases: a high-affinity phase with a K(m) of approximately 30 mum and a low-affinity phase with a K(m) of approximately 0.9 mm. As cipk8 mutants were defective mainly in the low-affinity response, the high-affinity and low-affinity nitrate signaling systems are proposed to be genetically distinct, with CIPK8 involved in the low-affinity system. In addition, CIPK8 was found to be involved in long-term nitrate-modulated primary root growth and nitrate-modulated expression of a vacuolar malate transporter. Taken together, our results indicate that CBL-CIPK networks are responsible not only for stress responses and potassium shortage, but also for nitrate sensing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Nitratos/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , RNA de Plantas/genética
16.
Nat Plants ; 6(9): 1126-1135, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32868892

RESUMO

Increasing nitrogen use efficiency (NUE) is critical to improve crop yield, reduce N fertilizer demand and alleviate environmental pollution. N remobilization is a key component of NUE. The nitrate transporter NRT1.7 is responsible for loading excess nitrate stored in source leaves into phloem and facilitates nitrate allocation to sink leaves. Under N starvation, the nrt1.7 mutant exhibits growth retardation, indicating that NRT1.7-mediated source-to-sink remobilization of stored nitrate is important for sustaining growth in plants. To energize NRT1.7-mediated nitrate recycling, we introduced a hyperactive chimeric nitrate transporter NC4N driven by the NRT1.7 promoter into the nrt1.7 mutant. NRT1.7p::NC4N::3' transgenic plants accumulated more nitrate in younger leaves, and 15NO3- tracing analysis revealed that more 15N was remobilized into sink tissues. Consistently, transgenic Arabidopsis, tobacco and rice plants showed improved growth or yield. Our study suggests that enhancing source-to-sink nitrate remobilization represents a new strategy for enhancing NUE and crop production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Plantas/genética
17.
Annu Rev Plant Biol ; 69: 85-122, 2018 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-29570365

RESUMO

Nitrogen accounts for approximately 60% of the fertilizer consumed each year; thus, it represents one of the major input costs for most nonlegume crops. Nitrate is one of the two major forms of nitrogen that plants acquire from the soil. Mechanistic insights into nitrate transport and signaling have enabled new strategies for enhancing nitrogen utilization efficiency, for lowering input costs for farming, and, more importantly, for alleviating environmental impacts (e.g., eutrophication and production of the greenhouse gas N2O). Over the past decade, significant progress has been made in understanding how nitrate is acquired from the surroundings, how it is efficiently distributed into different plant tissues in response to environmental changes, how nitrate signaling is perceived and transmitted, and how shoot and root nitrogen status is communicated. Several key components of these processes have proven to be novel tools for enhancing nitrate- and nitrogen-use efficiency. In this review, we focus on the roles of NRT1 and NRT2 in nitrate uptake and nitrate allocation among different tissues; we describe the functions of the transceptor NRT1.1, transcription factors, and small signaling peptides in nitrate signaling and tissue communication; and we compile the new strategies for improving nitrogen-use efficiency.


Assuntos
Nitratos/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais , Transporte Biológico , Modelos Biológicos , Proteínas de Plantas/metabolismo
18.
FEBS Lett ; 581(12): 2290-300, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17481610

RESUMO

In higher plants, two types of nitrate transporters, NRT1 and NRT2, have been identified. In Arabidopsis, there are 53 NRT1 genes and 7 NRT2 genes. NRT2 are high-affinity nitrate transporters, while most members of the NRT1 family are low-affinity nitrate transporters. The exception is CHL1 (AtNRT1.1), which is a dual-affinity nitrate transporter, its mode of action being switched by phosphorylation and dephosphorylation of threonine 101. Two of the NRT1 genes, CHL1 and AtNRT1.2, and two of the NRT2 genes, AtNRT2.1 and AtNRT2.2, are known to be involved in nitrate uptake. In addition, AtNRT1.4 is required for petiole nitrate storage. On the other hand, some members of the NRT1 family are dipeptide transporters, called PTRs, which transport a broad spectrum of di/tripeptides. In barley, HvPTR1, expressed in the plasma membrane of scutellar epithelial cells, is involved in mobilizing peptides, produced by hydrolysis of endosperm storage protein, to the developing embryo. In higher plants, there is another family of peptide transporters, called oligopeptide transporters (OPTs), which transport tetra/pentapeptides. In addition, some OPTs transport GSH, GSSH, GSH conjugates, phytochelatins, and metals.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Expressão Gênica , Genes de Plantas , Glutationa/metabolismo , Cinética , Proteínas de Membrana Transportadoras/genética , Transportadores de Nitrato , Filogenia , Fitoquelatinas , Proteínas de Plantas/genética , Plantas/genética , Distribuição Tecidual
19.
Sci Rep ; 5: 9635, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25923512

RESUMO

Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Nitratos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Transporte Biológico/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Transportadores de Nitrato , Oócitos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , Xilema/metabolismo
20.
Trends Plant Sci ; 19(1): 5-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24055139

RESUMO

Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.


Assuntos
Proteínas de Transporte de Ânions/classificação , Proteínas de Membrana Transportadoras/classificação , Plantas/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Nitrato , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA