Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575950

RESUMO

Cinnamic acid and its derivatives have been studied for a variety of biological properties, including anti-inflammatory, antioxidant, anticancer, antihypertensive, and antibacterial. Many hybrids of cinnamic derivatives with other bioactive molecules have been synthesized and evaluated as nitric oxide (NO) donors. Since NO plays a significant role in various biological processes, including vasodilation, inflammation, and neurotransmission, NO donor groups are incorporated into the structures of already-known bioactive molecules to enhance their biological properties. In this review, we present cinnamic hybrids with NO-donating ability useful in the treatment of several diseases.


Assuntos
Cinamatos/química , Inflamação/terapia , Óxido Nítrico/química , Cinamatos/uso terapêutico , Humanos , Inflamação/metabolismo , Inflamação/patologia , Óxido Nítrico/genética , Óxido Nítrico/uso terapêutico , Vasodilatação/genética
2.
Curr Top Med Chem ; 23(29): 2723-2734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093588

RESUMO

BACKGROUND: Nitric oxide is a free radical bioregulator controlling homeostasis, vasodilation, and inhibition of platelet aggregation, significantly implicated in the nervous and immune system functionality. In vivo it is produced by nitric oxide synthases (NOSs). OBJECTIVE: Overproduction of nitric oxide is linked to several inflammatory, immunological, and neurodegenerative diseases and for that, various compounds have been synthesized as inhibitors of NOSs. In this review, the QSAR analyses were summarized in a variety of compounds as potent inhibitors of NOSs, and the models derived through 1D, 2D and 3D QSAR analyses. CONCLUSION: Ten groups of various NOS inhibitors and 17 1D, 2D, and 3D QSAR models and analyses were presented and discussed. A lack of hydrophobic terms was noticed in most of the cases. Chemical substituents were selected considering the increase either of the hydrophilicity and/or of hydrophobicity, bulkiness supported steric interactions, and point to potent inhibitors. CMR (Calculated Molar Refractivity) a steric variable, with a negative sign, underlines the critical effects participating on (in) an active site on the enzymes. Indicator variables imply the influence of specific structural moieties. Electronic parameters were found to be significant.


Assuntos
Óxido Nítrico , Relação Quantitativa Estrutura-Atividade , Óxido Nítrico Sintase/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA