Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 20(1): 796-804, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447958

RESUMO

We have developed hard X-ray photoelectron spectroscopy (HAXPES) under an applied magnetic field of 1 kOe to study the electronic and magnetic states related to the MgO/Fe interface-induced perpendicular magnetic anisotropy (PMA). In this work, we used MgO (2 nm)/Fe (1.5 and 20 nm)/MgO(001) structures to reveal the interface-induced electronic states of the Fe film. Perpendicular magnetization of the 1.5-nm-thick Fe film without extrinsic oxidation of the Fe film was detected by the Fe 2p core-level magnetic circular dichroism (MCD) in HAXPES under a magnetic field, and easy magnetization axis perpendicular to the film plane was confirmed by ex situ magnetic hysteresis measurements. The valence-band HAXPES spectrum of the 1.5-nm-thick Fe film revealed that the Fe 3d electronic states were strongly modified from the thick Fe film and a reference bulk Fe sample due to the lifting of degeneracy in the Fe 3d states near the MgO/Fe interface. We found that the tetragonal distortion of the Fe film by the MgO substrate also contributes to the lifting of degeneracy in the Fe 3d states and PMA, as well as the Fe 3d-O 2p hybridization at the MgO/Fe interface, by comparing the valence-band spectrum with density functional theory calculations for MgO/Fe multilayer structures. Thus, we can conclude that the Fe 3d-O 2p hybridization and tetragonal distortion of the Fe film play important roles in PMA at the MgO/Fe interface. HAXPES with in situ magnetization thus represents a powerful new method for studying spintronic structures.

2.
J Phys Condens Matter ; 33(14)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33498024

RESUMO

We studied the applicability of Heusler alloys Mn2RuZ(Z= Al, Ga, Ge, Si) to the electrode materials of MgO-based magnetic tunnel junctions. All these alloys possess Hg2CuTi-type inverse Heusler alloy structure and ferrimagnetic ground state. Our study reveals the half-metallic electronic structure with highly spin-polarized Δ1band, which is robust against atomic disorder. Next we studied the electronic structure of Mn2RuAl/MgO and Mn2RuGe/MgO heterojunctions. We found that the MnAl- or MnGe-terminated interface is energetically more favorable compared to the MnRu-terminated interface. Interfacial states appear at the Fermi level in the minority-spin gap for the Mn2RuGe/MgO junction. We discuss the origin of these interfacial states in terms of local environment around each constituent atom. On the other hand, in the Mn2RuAl/MgO junction, high spin polarization of bulk Mn2RuAl is preserved independent of its termination.

3.
Micromachines (Basel) ; 10(5)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096668

RESUMO

The electron spin degree of freedom can provide the functionality of "nonvolatility" in electronic devices. For example, magnetoresistive random access memory (MRAM) is expected as an ideal nonvolatile working memory, with high speed response, high write endurance, and good compatibility with complementary metal-oxide-semiconductor (CMOS) technologies. However, a challenging technical issue is to reduce the operating power. With the present technology, an electrical current is required to control the direction and dynamics of the spin. This consumes high energy when compared with electric-field controlled devices, such as those that are used in the semiconductor industry. A novel approach to overcome this problem is to use the voltage-controlled magnetic anisotropy (VCMA) effect, which draws attention to the development of a new type of MRAM that is controlled by voltage (voltage-torque MRAM). This paper reviews recent progress in experimental demonstrations of the VCMA effect. First, we present an overview of the early experimental observations of the VCMA effect in all-solid state devices, and follow this with an introduction of the concept of the voltage-induced dynamic switching technique. Subsequently, we describe recent progress in understanding of physical origin of the VCMA effect. Finally, new materials research to realize a highly-efficient VCMA effect and the verification of reliable voltage-induced dynamic switching with a low write error rate are introduced, followed by a discussion of the technical challenges that will be encountered in the future development of voltage-torque MRAM.

4.
Sci Rep ; 7: 46132, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406236

RESUMO

We used x-ray absorption spectroscopy and x-ray magnetic circular dichroism to investigate the effects of inserting Cu into Co/Pt interfaces, and found that a 0.4-nm-thick inserted Cu layer showed perpendicularly magnetized properties induced by the proximity effect through the Co and Pt layers. The dependence of the magnetic properties on the thickness of the Cu layers showed that the proximity effects between Co and Pt with perpendicular magnetic anisotropy can be prevented by the insertion of a Cu layer with a nominal threshold thickness of 0.7 nm. Element-specific magnetization curves were also obtained, demonstrating that the out-of-plane magnetization is induced in the Cu layers of the Co/Cu/Pt structures.

5.
Nat Commun ; 8: 15848, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643780

RESUMO

Electric fields at interfaces exhibit useful phenomena, such as switching functions in transistors, through electron accumulations and/or electric dipole inductions. We find one potentially unique situation in a metal-dielectric interface in which the electric field is atomically inhomogeneous because of the strong electrostatic screening effect in metals. Such electric fields enable us to access electric quadrupoles of the electron shell. Here we show, by synchrotron X-ray absorption spectroscopy, electric field induction of magnetic dipole moments in a platinum monatomic layer placed on ferromagnetic iron. Our theoretical analysis indicates that electric quadrupole induction produces magnetic dipole moments and provides a large magnetic anisotropy change. In contrast with the inability of current designs to offer ultrahigh-density memory devices using electric-field-induced spin control, our findings enable a material design showing more than ten times larger anisotropy energy change for such a use and highlight a path in electric-field control of condensed matter.

6.
J Phys Condens Matter ; 25(10): 106005, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23395865

RESUMO

We investigated the origin of perpendicular magneto-crystalline anisotropy (MCA) in L1(0)-ordered FeNi alloy using first-principles density-functional calculations. We found that the perpendicular MCA of L1(0)-FeNi arises predominantly from the constituent Fe atoms, which is consistent with recent measurements of the anisotropy of the Fe orbital magnetic moment of L1(0)-FeNi by means of x-ray magnetic circular dichroism. Analysis of the second-order perturbation of the spin-orbit interaction indicates that spin-flip excitations between the occupied majority-spin and unoccupied minority-spin bands make a considerable contribution to the perpendicular MCA, as does the spin-conservation term for the minority-spin bands. Furthermore, the MCA energy increases as the in-plane lattice parameter decreases (increasing the axial ratio c/a). The increase in the MCA energy can be attributed to further enhancement of the spin-flip term due to modulation of the Fe d(xy) and d(x(2) - y(2)) orbital components around the Fermi level under compressive in-plane distortion.

7.
Phys Rev Lett ; 102(24): 247203, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19659042

RESUMO

We investigate crystalline magnetic anisotropy in the electric field (EF) for the FePt surface which has a large perpendicular anisotropy, by means of the first-principles approach. Anisotropy is reduced linearly with respect to the inward EF, associated with the induced spin density around the Fe layer. Although the magnetic anisotropy energy (MAE) density reveals large variation around the atoms, the intrinsic contribution to the MAE is found to mainly come from the Fe layer. The surface without the capping Pt layer also shows similar linear dependence.

8.
Phys Rev Lett ; 102(9): 096805, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392551

RESUMO

The polarization vector of the Rashba spin, which must be parallel to the two-dimensional (2D) plane in an ideal system, is found to change abruptly and definitely to the direction perpendicular to the surface at the K point of the Brillouin zone of a real hexagonal system, the Tl/Si(111)-(1x1) surface. This finding obtained experimentally by angle-resolved and spin-resolved photoemission measurements is fully confirmed by a first-principles theoretical calculation. We found that the abrupt rotation of the Rashba spin is simply understood by the 2D symmetry of the hexagonal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA