Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 22(10): 11727-40, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921295

RESUMO

We generate random bit sequences from chaotic temporal waveforms by using photonic integrated circuits (PICs) with different external cavity lengths. We investigate the condition for generating random bits at different sampling rates of single-bit generation method with the PICs. We succeed in generating certified random bit sequences by using the PIC with 3, 4, 5, or 10-mm-long external cavity, whereas random bits cannot pass all the statistical tests of randomness when the PIC with 1 or 2 mm-long external cavity is used.

2.
Chaos ; 22(4): 047513, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23278099

RESUMO

We present an experimental method for directly observing the amplification of microscopic intrinsic noise in a high-dimensional chaotic laser system, a laser with delayed feedback. In the experiment, the chaotic laser system is repeatedly switched from a stable lasing state to a chaotic state, and the time evolution of an ensemble of chaotic states starting from the same initial state is measured. It is experimentally demonstrated that intrinsic noises amplified by the chaotic dynamics are transformed into macroscopic fluctuating signals, and the probability density of the output light intensity actually converges to a natural invariant probability density in a strongly chaotic regime. Moreover, with the experimental method, we discuss the application of the chaotic laser systems to physical random bit generators. It is experimentally shown that the convergence to the invariant density plays an important role in nondeterministic random bit generation, which could be desirable for future ultimate secure communication systems.

3.
Opt Express ; 19(8): 7439-50, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21503053

RESUMO

We experimentally show that a random optical pulse train can be generated by modulating a bistable semiconductor ring laser. When the ring laser is switched from the monostable to the bistable regime, it randomly selects one of two different stable unidirectional lasing modes, clockwise or counterclockwise modes. Non-deterministic random pulse sequences are generated by driving the switch parameter, the injection current, with a periodic pulse signal. The origin of the nondeterministic randomness is the amplified spontaneous emission noise coupled to the counter-propagating lasing modes. The statistical randomness properties are optimized by adjusting the relative strength of amplified spontaneous emission noise sources for the two lasing modes. It is also shown that it is possible to generate optical pulse sequences which pass a standard suite of statistical randomness tests.

4.
Opt Express ; 19(7): 5713-24, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21451596

RESUMO

We report a novel chaos semiconductor laser chip in which a distributed feedback (DFB) laser, two semiconductor optical amplifiers (SOAs) and a photodiode (PD) are monolithically integrated with a passive ring waveguide. The ring-type structure with the two separate SOAs achieves stronger delayed optical feedback compared to previous chaos laser chips which use linear waveguide and facet-reflection. The integrated PD allows efficient detection of the optical signal with low optical loss. A rich variety of dynamical behaviors and optical signals can be selectively generated via injection currents to the two separate SOAs. In particular, the strong optical feedback makes possible the generation of strong broadband optical chaos, with very flat spectrum of ±6.5 dB up to 10 GHz. The stability and quality of the chaotic mode is demonstrated using strict statistical tests of randomness applied to long binary sequences extracted by sampling the optical intensity signal.


Assuntos
Lasers Semicondutores , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA