Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 20(3): e2305664, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691085

RESUMO

Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein,  we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip,  we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.

2.
Phys Chem Chem Phys ; 26(4): 3029-3035, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38179875

RESUMO

Lead apatites, distinguished and compelling bulk materials with the stoichiometric arrangement as Pb10(POx)6Oy, are renowned for their structural complexity. Recently, the discovery of possible room-temperature superconductivity under ambient pressure in copper-substituted lead apatites has engendered considerable interest within both the physics community and beyond. Nevertheless, exploration of pristine Pb10(POx)6Oy parent structures has hitherto remained elusive. In this study, we employ density functional theory (DFT) calculations to investigate the effects of oxygen defects on the electronic structures of Pb10(POx)6Oy and Pb9Cu(POx)6Oy. We scrutinize two distinct categories of defects: oxygen atoms enmeshed within POx groups (Ox) and solitary oxygen atoms (Oy). Our investigation uncovers a profound influence of these defects on the band structure. Specifically, the introduction of Oy defects prompts a remarkable transition in Pb10(PO4)6Oy from a metal to semiconductor to metal state, accompanied by pivotal shifts in the principal electronic contributors from p orbitals of Oy to those of Pb atoms. Furthermore, the introduction of Ox defects in Pb10(POx)6O1 engenders metamorphosis in the band structure, transmuting it from a semiconductor to a metallic state. Significantly, our findings pinpoint the suitable range of x in the Pb10(POx)6O1 configuration as lying between 2 and 4. Additionally, our study also demonstrates that the oxygen defects (Ox/Oy) do not affect the metallic properties of copper-substituted lead apatites. This study elucidates the significant role of oxygen defects in modulating the electronic properties of apatite materials, offering insights into potential interdisciplinary applications. This establishes a crucial link between material composition and electronic behavior, revealing key mechanisms for engineering functionality in lead apatites and other advanced materials.

3.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884409

RESUMO

The oxygen reduction reaction (ORR), a pivotal process in hydrogen fuel cells crucial for enhancing fuel cell performance through suitable catalysts, remains a challenging aspect of development. This study explores the catalytic potential of germanene on Al (111), taking advantage of the successful preparation of stable reconstructed germanene layers on Al (111) and the excellent catalytic performance exhibited by germanium-based nanomaterials. Through first-principles calculations, we demonstrate that the O2 molecule can be effectively activated on both freestanding and supported germanene nanosheets, featuring kinetic barriers of 0.40 and 0.04 eV, respectively. The presence of the Al substrate not only significantly enhances the stability of the reconstructed germanene but also preserves its exceptional ORR catalytic performance. These theoretical findings offer crucial insights into the substrate-mediated modulation of germanene stability and catalytic efficiency, paving the way for the design of stable and efficient ORR catalysts for future applications.

4.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619458

RESUMO

Identifying the oxidation structure of two-dimensional interfaces is crucial to improve surface chemistry and electronic properties. Beyond graphene with only phenyl rings, a novel carbon-nitrogen material, C3N, presents an intrinsic heterogeneous surface morphology where each phenyl ring is encircled by six nitrogen atoms, yet its atomistic oxidation structure remains unclear. Here, combining a series of density functional theory calculations and ab initio molecular dynamics simulations, we demonstrate that thermodynamically favorable oxidation loci are confined to the phenyl ring, and kinetic transformations of oxidation structures are feasible along the phenyl ring, whereas those toward nitrogen atoms are proven to be extremely difficult. These results are attributed to the lower barrier of oxygen atom migration along the phenyl ring, while the significantly high barriers toward nitrogen atoms are due to the heterogeneous potential energy surface for oxygen-C3N interaction. This work highlights the significance of surface morphology on the characteristics of oxidation structure, offering insights into tunable electronic properties via confined interfacial oxidation.

5.
Molecules ; 29(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38398579

RESUMO

While nanoporous graphene oxide (GO) is recognized as one of the most promising reverse osmosis desalination membranes, limited attention has been paid to controlling desalination performance through the large GO pores, primarily due to significant ion leakage resulting in the suboptimal performance of these pores. In this study, we employed a molecular dynamics simulation approach to demonstrate that Mg2+ ions, adhered to carboxylated GO nanopores, can function as gates, regulating the transport of ions (Na+ and Cl-) through the porous GO membrane. Specifically, the presence of divalent cations near a nanopore reduces the concentration of salt ions in the vicinity of the pore and prolongs their permeation time across the pore. This subsequently leads to a notable enhancement in salt rejection rates. Additionally, the ion rejection rate increases with more adsorbed Mg2+ ions. However, the presence of the adsorbed Mg2+ ions compromises water transport. Here, we also elucidate the impact of graphene oxidation degree on desalination. Furthermore, we design an optimal combination of adsorbed Mg2+ ion quantity and oxidation degree to achieve high water flux and salt rejection rates. This work provides valuable insights for developing new nanoporous graphene oxide membranes for controlled water desalination.

6.
Phys Chem Chem Phys ; 25(32): 21376-21382, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530059

RESUMO

OH-terminated self-assembled monolayers, as protein-resistant surfaces, have significant potential in biocompatible implant devices, which can avoid or reduce adverse reactions caused by protein adhesion to biomaterial surfaces, such as thrombosis, immune response and inflammation. Here, molecular dynamics simulations were performed to evaluate the degree of protein adsorption on the self-assembled monolayer terminated with two hydrophilic OH groups ((OH)2-SAM) at packing densities (Σ) of 4.5 nm-2 and 6.5 nm-2, respectively. The results show that the structure of the (OH)2-SAM itself, i.e., a nearly perfect hexagonal-ice-like hydrogen bond structure in the OH matrix of the (OH)2-SAM at Σ = 4.5 nm-2 sharply reduces the number of hydrogen bonds (i.e., 0.7 ± 0.27) formed between the hydrophobic (OH)2-SAM surface and protein. While for Σ = 6.5 nm-2, the hydrophilic (OH)2-SAM surface can provide more hydrogen bonding sites to form hydrogen bonds (i.e., 6.2 ± 1.07) with protein. The number of hydrogen bonds formed between the (OH)2-SAM and protein at Σ = 6.5 nm-2 is ∼8 times higher than that at Σ = 4.5 nm-2, reflecting the excellent resistance to protein adsorption exhibited by the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2. Compared with a traditional physical barrier effect formed by a large number of hydrogen bonds between the (OH)2-SAM and water at Σ = 6.5 nm-2, the structure of the (OH)2-SAM itself at Σ = 4.5 nm-2 proposed in this study significantly improves the performance of the (OH)2-SAM resistance to protein adsorption, which provides new insights into the mechanism of resistance to protein adsorption on the (OH)2-SAM.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Adsorção , Propriedades de Superfície , Proteínas/química , Interações Hidrofóbicas e Hidrofílicas
7.
Phys Chem Chem Phys ; 25(17): 12157-12164, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37070719

RESUMO

By employing first-principles calculations that integrate self-consistent phonon theory and the Boltzmann transport equation, we have delved into the thermal transport characteristics of hexagonal anisotropic materials A2B (A = Cs, Rb and B = Se, Te). Our computational results have disclosed that these A2B materials exhibit ultralow lattice thermal conductivity (κL) at room temperature. Specifically, in the case of Cs2Te, the κL values are a mere 0.15 W m-1 K-1 in the a(b) direction and 0.22 W m-1 K-1 in the c direction, both markedly less than the thermal conductivity of quartz glass, a conventional thermoelectric material (0.9 W m-1 K-1). Importantly, our calculations encompass higher-order anharmonic effects while computing the lattice thermal conductivities of these materials. This is essential since pronounced anharmonicity leads to a decrease in phonon group velocity, and consequently, lowers the κL values. Our results establish a theoretical foundation for exploring the thermal transport characteristics of anisotropic materials with substantial anharmonicity. Furthermore, the binary compounds A2B proffer a gamut of possibilities for a wide range of applications in thermoelectrics and thermal management, owing to their ultralow lattice thermal conductivity.

8.
Phys Chem Chem Phys ; 25(39): 26507-26514, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782050

RESUMO

Antiperovskites are a burgeoning class of semiconducting materials that showcase remarkable optoelectronic properties and catalytic properties. However, there has been limited research on their thermoelectric properties. Combining first-principles calculations, self-consistent phonon theory and the Boltzmann transport equation, we have discovered that the hexagonal antiperovskites X(Ba & Sr)3BiN exhibit strong quartic lattice anharmonicity, where the anharmonic vibrations of the light N atoms primarily affect the lattice thermal conductivity (κL) along the c-axis direction. As a result, the lattice thermal conductivities along the a(b)-axis direction are low. At 300 K, the κL values of Ba3BiN and Sr3BiN are only 1.27 W m-1 K-1 and 2.24 W m-1 K-1, respectively. Moreover, near the valence band maximum, the orbitals of the N atoms dominate. This dominance allows Sr3BiN to achieve high power factor under p-type doping, resulting in an impressive thermoelectric figure of merit (ZT) of 0.94 along the c-axis direction at 800 K. In the a(b)-axis direction, at 800 K, n-type doped Ba3BiN exhibits a ZT value of 1.47, surpassing that of traditional thermoelectric materials. Our research elucidates that the hexagonal antiperovskites X(Ba & Sr)3BiN represent a category of potential thermoelectric materials with pronounced anisotropy, low thermal conductivity, and high thermoelectric performance.

9.
Phys Chem Chem Phys ; 25(20): 14089-14095, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161756

RESUMO

The dynamic oxygen migration at the interface of carbon allotropes dominated by the periodic hexagonal rings, including graphene and carbon nanotubes, has opened up a new avenue to realize dynamic covalent materials. However, for the carbon materials with hybrid carbon rings, such as biphenylene, whether the dynamic oxygen migration at its interface can still be found remains unknown. Using both density functional theory calculations and machine-learning-based molecular dynamics (MLMD) simulations, we found that the oxygen migration departing away from the four-membered carbon (C4) ring is hindered, and the oxygen atom prefers to spontaneously migrate toward/around the C4 ring. This locally spontaneous dynamic oxygen migration on the biphenylene is attributed to a high barrier of about 1.5 eV for the former process and a relatively low barrier of about 0.3 eV for the latter one, originating from the enhanced activity of the C-O bond near/around the C4 ring due to the hybrid carbon ring structure. Moreover, the locally spontaneous dynamic oxygen migration is further confirmed by MLMD simulations. This work sheds light on the potential of biphenylene as a catalyst for spatially controlled energy conversion and provides the guidance for realizing the dynamic covalent interface at other carbon-based or two-dimensional materials.

10.
Phys Chem Chem Phys ; 25(41): 28533-28540, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847520

RESUMO

Artificial photosynthesis is a crucial reaction that addresses energy and environmental challenges by converting CO2 into fuels and value-added chemicals. However, efficient catalytic activity using earth-abundant materials can be challenging due to intrinsic limitations. Herein, we explore neutral (TiO2)n (n = 1-6) atomic clusters for CO2 hydrogenation via comprehensive ab initio calculations combined with time-dependent functional theory. Our results show that these (TiO2)n clusters exhibit outstanding thermodynamic stabilities and decent surficial activities for CO2 activation and H2 dissociation, both of which possess kinetic barriers down to 0-0.74 eV. We establish a relationship between the binding strength of *CO2 species and electron characterization for these (TiO2)n clusters. These clusters, which have a wide energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccpied molecular orbital (LUMO) that allows them to harvest the solar light in the ultraviolet regime, enabling efficient catalysis for driving the catalysis of CO2 conversion. They provide exclusive reaction channels and high selectivity for yielding HCOOH products via the carboxyl mechanism, involving the kinetic barrier of the limiting step of 0.74-1.25 eV. We also investigated the substrate effect on supported (TiO2)n clusters, with non-metallic substrates featuring inert surfaces serving as suitable options for anchoring (TiO2)n clusters while preserving their intrinsic activity and selectivity. These computational results have significant implications not only for meeting energy demands but also for mitigating carbon emissions by utilizing CO2 as an alternative feedstock rather than considering it solely as a greenhouse gas.

11.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403850

RESUMO

Thermal conductivity and power factor are key factors in evaluating heat transfer performance and designing thermoelectric conversion devices. To search for materials with ultralow thermal conductivity and a high power factor, we proposed a set of universal statistical interaction descriptors (SIDs) and developed accurate machine learning models for the prediction of thermoelectric properties. For lattice thermal conductivity prediction, the SID-based model achieved the state-of-the-art results with an average absolute error of 1.76 W m-1 K-1. The well-performing models predicted that hypervalent triiodides XI3 (X = Rb, Cs) have ultralow thermal conductivities and high power factors. Combining first-principles calculations, the self-consistent phonon theory, and the Boltzmann transport equation, we obtained the anharmonic lattice thermal conductivities of 0.10 and 0.13 W m-1 K-1 for CsI3 and RbI3 in the c-axis direction at 300 K, respectively. Further studies show that the ultralow thermal conductivity of XI3 arises from the competition of vibrations between alkali metal atoms and halogen atoms. In addition, at 700 K, the thermoelectric figure of merit ZT values of CsI3 and RbI3 are 4.10 and 1.52, respectively, at the optimal hole doping level, which indicates hypervalent triiodides are potential high performance thermoelectric materials.

12.
Small ; 18(20): e2200016, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35244332

RESUMO

As with all stylish 2D functional materials, tellurene and tellurides possessing excellent physical and chemical properties such as high environmental stability, tunable narrow bandgap, and lower thermal conductivity, have aroused the great interest of the researchers. These properties of such materials also form the basis for relatively newfangled scholarly fields involving advanced topics, especially for broadband photodetectors. Integrating the excellent properties of many 2D materials, tellurene/telluride-based photodetectors show great flexibility, higher frequency response or faster time response, high signal-to-noise ratio, and so on, which make them leading the frontier of photodetector research. To fully understand the excellent properties of tellurene/tellurides and their optoelectronic applications, the recent advances in tellurene/telluride-based photodetectors are maximally summarized. Benefiting from the solid research in this field, the challenges and opportunities of tellurene/tellurides for future optoelectronic applications are also discussed in this review, which might provide possibilities for the realization of state-of-the-art high-performance tellurene/telluride-based devices.

13.
Bioconjug Chem ; 28(10): 2608-2619, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28903003

RESUMO

Specific targeting of tumor tissues is essential for tumor imaging and therapeutics but remains challenging. Here, we report an unprecedented method using synthetic sulfonic-graphene quantum dots (sulfonic-GQDs) to exactly target the cancer cell nuclei in vivo without any bio- ligand modification, with no intervention in cells of normal tissues. The key factor for such selectivity is the high interstitial fluid pressure (IFP) in tumor tissues, which allows the penetration of sulfonic-GQDs into the plasma membrane of tumor cells. In vitro, the sulfonic-GQDs are repelled out of the cell membrane because of the repulsive force between negatively charged sulfonic-GQDs and the cell membranes which contributes to the low distribution in normal tissues in vivo. However, the plasma membrane-crossing process can be activated by incubating cells in ultrathin film culture medium because of the attachment of sulfonic-GQDs on cell memebranes. Molecular dynamics simulations demonstrated that, once transported across the plasma membrane, the negatively charged functional groups of these GQDs will leave the membrane with a self-cleaning function retaining a small enough size to achieve penetration through the nuclear membrane into the nucleus. Our study showed that IFP is a previously unrecognized mechanism for specific targeting of tumor cell nuclei and suggested that sulfonic-GQDs may be developed into novel tools for tumor-specific imaging and therapeutics.


Assuntos
Núcleo Celular/metabolismo , Grafite/química , Grafite/metabolismo , Pontos Quânticos/química , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Líquido Extracelular/metabolismo , Grafite/farmacocinética , Humanos , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Ácidos Sulfônicos/química , Temperatura
14.
Chemistry ; 23(53): 13100-13104, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28714285

RESUMO

Functional nanoscale structures consisting of a DNA molecule coupled to graphene or graphene oxide (GO) have great potential for applications in biosensors, biomedicine, nanotechnology, and materials science. Extensive studies using the most sophisticated experimental techniques and theoretical methods have still not clarified the dynamic process of single-stranded DNA (ssDNA) adsorbed on GO surfaces. Based on a molecular dynamics simulation, this work shows that an ssDNA segment could be stably adsorbed on a GO surface through hydrogen bonding and π-π stacking interactions, with preferential binding to the oxidized rather than to the unoxidized region of the GO surface. The adsorption process shows a dynamic cooperation adsorption behavior; the ssDNA segment first captures the oxidized groups of the GO surface by hydrogen bonding interaction, and then the configuration relaxes to maximize the π-π stacking interactions between the aromatic rings of the nucleobases and those of the GO surface. We attributed this behavior to the faster forming hydrogen bonding interaction compared to π-π stacking; the π-π stacking interaction needs more relaxation time to regulate the configuration of the ssDNA segment to fit the aromatic rings on the GO surface.


Assuntos
DNA de Cadeia Simples/química , Grafite/química , Nanoestruturas/química , Óxidos/química , Adsorção , Técnicas Biossensoriais/métodos , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade , Propriedades de Superfície
15.
Phys Rev Lett ; 115(18): 186101, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26565476

RESUMO

By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

16.
Phys Rev Lett ; 112(7): 078301, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579638

RESUMO

Using molecular dynamics simulations, we find a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, which is not observed in macroscopic systems. The nanoscale confinement also leads to a significant increase of the critical aggregation concentration (CAC). A theoretical model based on Gibbs free energy calculation is developed to describe the simulation results. It indicates that the reversible state transition is attributed to the low free energy barrier (of order kBT) in between two energy minima corresponding to the dispersion and aggregation states, and the enhancement of the CAC results from the fact that at lower concentrations the number of solute molecules is not large enough to allow the formation of a stable cluster in the confined systems.


Assuntos
Modelos Químicos , Nanopartículas/química , Água/química , Simulação de Dinâmica Molecular , Transição de Fase , Soluções/química , Termodinâmica
17.
J Chem Phys ; 141(4): 044707, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25084937

RESUMO

In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.


Assuntos
Nanotubos de Carbono/química , Ureia/química , Elétrons , Simulação de Dinâmica Molecular
18.
Angew Chem Int Ed Engl ; 53(38): 10190-4, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25044430

RESUMO

Recent experiments have shown the coexistence of both large unoxidized and oxidized regions on graphene oxide (GO), but the underlying mechanism for the formation of the GO atomic structure remains unknown. Now, using density functional calculations, 52 oxidation pathways for local pyrene structures on GO were identified, and a kinetic profile for graphene oxidation with a high correlation between oxidation loci was proposed, which is different from the conventional view, which entails a random distribution of oxidation loci. The high correlation is an essential nature of graphene oxidation processes and can be attributed to three crucial effects: 1) breaking of delocalized π bonds, 2) steric hindrance, and 3) hydrogen-bond formation. This high correlation leads to the coexistence of both large unoxidized and oxidized regions on GO. Interestingly, even in oxidized regions on GO, some small areas of sp(2)-hybridized domains, similar to "islands", can persist because of steric effects.

19.
J Phys Chem Lett ; 15(4): 1161-1171, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270087

RESUMO

Carbon-based quantum dots (QDs) exhibit unique photoluminescence due to size-dependent quantum confinement, giving rise to fascinating full-color emission properties. Accurate emission calculations using time-dependent density functional theory are a time-costing and expensive process. Herein, we employed an artificial neural network (ANN) combined with statistical learning to establish the relationship between geometrical/electronic structures of ground states and emission wavelength for C3N QDs. The emission energy of these QDs can be doubly modulated by size and edge effects, which are governed by the number of C4N2 rings and the CH group, respectively. Moreover, these two structural characteristics also determine the phonon vibration mode of C3N QDs to harmonize the emission intensity and lifetime of hot electrons in the electron-hole recombination process, as indicated by nonadiabatic molecular dynamics simulation. These computational results provide a general approach to atomically precise design the full-color fluorescent carbon-based QDs with targeted functions and high performance.

20.
Adv Sci (Weinh) ; : e2404001, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973254

RESUMO

Nanographene oxide (nGO) flakes-graphene oxide with a lateral size of ≈100 nm or less-hold great promise for superior flux and energy-efficient nanofiltration membranes for desalination and precise ionic sieving owing to their unique high-density water channels with less tortuousness. However, their potential usage is currently limited by several challenges, including the tricky self-assembly of nano-sized flakes on substrates with micron-sized pores, severe swelling in aqueous solutions, and mechanical instability. Herein, the successful fabrication of a robust membrane stacked with nGO flakes on a substrate with a pore size of 0.22 µm by vacuum filtration is reported. This membrane achieved an unprecedented water permeance above 819.1 LMH bar-1, with a high rejection rate of 99.7% for multivalent metal ions. The nGO flakes prepared using an electron beam irradiation method, have uniquely pure hydroxyl groups and abundant aromatic regions. The calculations revealed the strong hydrogen bonds between two nGO flakes, which arise from hydroxyl groups, coupled with hydrophobic aromatic regions, greatly enhance the stability of stacked flakes in aqueous solutions and increase their effective lateral size. The research presents a simple yet effective approach toward the fabrication of advanced 2D nanographene membranes with superior performance for ion sieving applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA