Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ann Neurol ; 86(4): 539-551, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376172

RESUMO

OBJECTIVE: Alzheimer disease (AD) is the leading cause of dementia, and although its etiology remains unclear, it seems that type 2 diabetes mellitus (T2DM) and other prediabetic states of insulin resistance could contribute to the appearance of sporadic AD. As such, we have assessed whether tau and ß-amyloid (Aß) deposits might be present in pancreatic tissue of subjects with AD, and whether amylin, an amyloidogenic protein deposited in the pancreas of T2DM patients, might accumulate in the brain of AD patients. METHODS: We studied pancreatic and brain tissue from 48 individuals with no neuropathological alterations and from 87 subjects diagnosed with AD. We examined Aß and tau accumulation in the pancreas as well as that of amylin in the brain. Moreover, we performed proximity ligation assays to ascertain whether tau and/or Aß interact with amylin in either the pancreas or brain of these subjects. RESULTS: Cytoplasmic tau and Aß protein deposits were detected in pancreatic ß cells of subjects with AD as well as in subjects with a normal neuropathological examination but with a history of T2DM and in a small cohort of control subjects without T2DM. Furthermore, we found amylin deposits in the brain of these subjects, providing histological evidence that amylin can interact with Aß and tau in both the pancreas and hippocampus. INTERPRETATION: The presence of both tau and Aß inclusions in pancreatic ß cells, and of amylin deposits in the brain, provides new evidence of a potential overlap in the mechanisms underlying the pathogenesis of T2DM and AD. ANN NEUROL 2019;86:539-551.


Assuntos
Doença de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pâncreas/metabolismo , Estudos Retrospectivos , Proteínas tau/metabolismo
2.
Acta Neuropathol ; 135(6): 877-886, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29536165

RESUMO

Parkinson's disease patients experience a wide range of non-motor symptoms that may be provoked by deposits of phosphorylated α-synuclein in the peripheral nervous system. Pre-existing diabetes mellitus might be a risk factor for developing Parkinson's disease, and indeed, nearly 60% of Parkinson's disease patients are insulin resistant. Thus, we have investigated whether phosphorylated α-synuclein is deposited in pancreatic tissue of subjects with synucleinopathies. We studied pancreatic tissue from 39 subjects diagnosed with Parkinson's disease, Lewy body Dementia or incidental Lewy bodies disease, as well as that from 34 subjects with diabetes mellitus and a normal neuropathological examination, and 52 subjects with a normal neuropathological examination. We examined the pancreatic accumulation of phosphorylated α-synuclein and of the islet amyloid polypeptide precursor (IAPP), an amyloidogenic protein that plays an unknown role in diabetes mellitus, but that can promote α-synuclein amyloid deposition in vitro. Moreover, we performed proximity ligation assays to assess whether these two proteins interact in the pancreas of these subjects. Cytoplasmic phosphorylated α-synuclein deposits were found in the pancreatic ß cells of 14 subjects with Parkinson's disease (93%), in 11 subjects with Lewy body Dementia (85%) and in 8 subjects with incidental Lewy body disease (73%). Furthermore, we found similar phosphorylated α-synuclein inclusions in 23 subjects with a normal neuropathological examination but with diabetes mellitus (68%) and in 9 control subjects (17%). In addition, IAPP/α-synuclein interactions appear to occur in patients with pancreatic inclusions of phosphorylated α-synuclein. The presence of phosphorylated α-synuclein inclusions in pancreatic ß cells provides a new evidence of a mechanism that is potentially common to the pathogenesis of diabetes mellitus, PD and DLB. Moreover, the interaction of IAPP and α-synuclein in the pancreatic ß cells of patients may represent a novel target for the development of strategies to treat these diseases.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Diabetes Mellitus/patologia , Feminino , Imunofluorescência , Humanos , Células Secretoras de Insulina/patologia , Doença por Corpos de Lewy/patologia , Masculino , Doença de Parkinson/patologia , Fosforilação , Estudos Retrospectivos , alfa-Sinucleína/metabolismo
3.
Acta Neuropathol ; 126(3): 411-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23784261

RESUMO

Olfactory impairment is a common feature of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Olfactory bulb (OB) pathology in these diseases shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. Since cholinergic denervation might be a common underlying pathophysiological feature, the objective of this study was to determine cholinergic innervation of the OB in 27 patients with histological diagnosis of PD (n = 5), AD (n = 14), DLB (n = 8) and 8 healthy control subjects. Cholinergic centrifugal inputs to the OB were clearly reduced in all patients, the most significant decrease being in the DLB group. We also studied cholinergic innervation of the OB in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (n = 7) and 7 intact animals. In MPTP-monkeys, we found that cholinergic innervation of the OB was reduced compared to control animals (n = 7). Interestingly, in MPTP-monkeys, we also detected a loss of cholinergic neurons and decreased dopaminergic innervation in the horizontal limb of the diagonal band, which is the origin of the centrifugal cholinergic input to the OB. All these data suggest that cholinergic damage in the OB might contribute, at least in part, to the olfactory dysfunction usually exhibited by these patients. Moreover, decreased cholinergic input to the OB found in MPTP-monkeys suggests that dopamine depletion in itself might reduce the cholinergic tone of basal forebrain cholinergic neurons.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/metabolismo , Bulbo Olfatório/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Haplorrinos , Humanos , Masculino , Bulbo Olfatório/patologia
4.
Acta Neuropathol ; 122(1): 61-74, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21553300

RESUMO

Olfactory dysfunction is a frequent and early feature of patients with neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) and is very uncommon in patients with frontotemporal dementia (FTD). Mechanisms underlying this clinical manifestation are poorly understood but the premature deposition of protein aggregates in the olfactory bulb (OB) of these patients might impair its synaptic organization, thus accounting for the smell deficits. Tau, ß-amyloid and alpha-synuclein deposits were studied in 41 human OBs with histological diagnosis of AD (n = 24), PD (n = 6), FTD (n = 11) and compared with the OB of 15 control subjects. Tau pathology was present in the OB of all patients, irrespective of the histological diagnosis, while ß-amyloid and alpha-synuclein protein deposit were frequently observed in AD and PD, respectively. Using stereological techniques we found an increased number of dopaminergic periglomerular neurons in the OB of AD, PD and FTD patients when compared with age-matched controls. Moreover, volumetric measurements of OBs showed a significant decrease only in AD patients, while the OB volume was similar to control in PD or FTD cases. The increased dopaminergic tone created in the OBs of these patients could reflect a compensatory mechanism created by the early degeneration of other neurotransmitter systems and might contribute to the olfactory dysfunction exhibited by patients with neurodegenerative disorders.


Assuntos
Doença de Alzheimer/metabolismo , Dopamina/metabolismo , Demência Frontotemporal/metabolismo , Bulbo Olfatório/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Autopsia , Estudos de Casos e Controles , Feminino , Demência Frontotemporal/patologia , Humanos , Masculino , Bulbo Olfatório/patologia , Bulbo Olfatório/fisiopatologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
5.
Acta Neuropathol Commun ; 9(1): 64, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832546

RESUMO

Protein misfolding diseases refer to a variety of disorders that develop as a consequence of the misfolding of proteins in various organs. The etiologies of Parkinson's and Alzheimer's disease remain unclear, but it seems that type two diabetes and other prediabetic states could contribute to the appearance of the sporadic forms of these diseases. In addition to amylin deposition, other amyloidogenic proteins implicated in the pathophysiology of neurodegenerative diseases could have important roles in the pathogenesis of this disease. As we have previously demonstrated the presence of α-synuclein deposits in the pancreas of patients with synucleinopathies, as well as tau and Aß deposits in the pancreatic tissue of Alzheimer's disease patients, we studied the immunoreactivity of amylin, tau and α-synuclein in the pancreas of 138 subjects with neurodegenerative diseases or type two diabetes and assessed whether the pancreatic ß-cells of these subjects present cooccurrence of misfolded proteins. Furthermore, we also assessed the pancreatic expression of prion protein (PrP) in these subjects and its interaction, both in the pancreas and brain, with α-synuclein, tau, Aß and amylin. Our study shows, for the first time, that along with amylin, pancreatic α-synuclein, Aß, PrP and tau may contribute together to the complex pathophysiology of type two diabetes and in the appearance of insulin resistance in Alzheimer's and Parkinson's disease. Furthermore, we show that the same mixed pathologies that are observed in the brains of patients with neurodegenerative diseases are also present outside the nervous system. Finally, we provide the first histological evidence of an interaction between PrP and Aß, α-synuclein, amylin or tau in the pancreas and locus coeruleus. These findings will shed more light on the common pathological pathways shared by neurodegenerative diseases and type two diabetes, benefiting the exploration of common therapeutic strategies to prevent or treat these devastating amyloid diseases.


Assuntos
Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Insulina/patologia , Doenças Neurodegenerativas/patologia , Proteínas Priônicas/metabolismo , Idoso , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Doenças Neurodegenerativas/metabolismo , Estudos Retrospectivos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
7.
Front Neuroanat ; 9: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814937

RESUMO

OBJECTIVE: To analyze the frequency and distribution of α-synuclein deposits in progressive supranuclear palsy (PSP). METHODS: The brains of 25 cases of pathologically confirmed PSP were evaluated with immunohistochemistry for α-synuclein and tau. Multiple immunofluorescent stains were applied to analyze the expression of tau and α-synuclein aggregates in catecholaminergic neurons. Patients' clinical symptoms were retrospectively recorded. RESULTS: Deposits α-synuclein in the form of typical Lewy bodies (LBs) were only found in two PSP cases (8%) that fulfilled the clinical subtype of PSP known as Richardson's syndrome (RS). LBs were present in the locus ceruleus (LC), substantia nigra pars compacta (SNc), basal forebrain, amygdala and cingulated cortex in a distribution mimicking that of Parkinson's disease (PD). Triple-immunolabeling revealed co-expression of α-synuclein and tau proteins in some tyrosine hydroxilase (TH)-positive neurons of the LC and SNc. CONCLUSIONS: There is no apparent clinical correlation between the presence of LBs in PSP. Tau protein co-aggregate with α-synuclein in catecholaminergic neurons of PSP brains suggesting a synergistic interaction between the two proteins. This is in keeping with the current view of neurodegenerative disorders as "misfolded protein diseases".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA