Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Res ; 246: 118046, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160968

RESUMO

Tannery sludge, a challenging waste, was utilized as a substrate for the production of Short-Chain Fatty Acids (SCFAs) through a series of six thermophilic Continuous Stirred-Tank Reactor runs. The sludge was subjected to a mild thermal pre-treatment and incorporated zeolites (chabazite in run II, and clinoptilolite in run III) in the acidification process. Results highlighted zeolites' impact on chromium concentration and the SCFAs/CODSOL ratio. Ammonia release remained consistent at around 47 % and 51 % for run I and II, respectively, but surpassed 60% in run III, suggesting limited zeolite effectiveness in NH4 absorption. Chromium release in the liquid fraction, due to thermal pretreatment, reached 335 mg/L. While in tests without zeolite, complete removal proved challenging, in zeolite-amended runs, complete removal was achieved, showcasing the materials' heavy metal absorption capacity. SCFA concentrations reached 20260 mgCOD/L, with acidification efficiency varying; runs I and III had ratios around 0.70 COD/COD, while run II showed substantial improvement (0.92) with chabazite. Anaerobic fermentation-digestion mass balance indicated a 41% reduction in landfill sludge mass, reducing its environmental footprint while yielding valuable byproducts like biogas and SCFAs. These findings underscore zeolites' potential in heavy metal absorption and acidification process enhancement, paving the way for applications with tannery sludge.


Assuntos
Metais Pesados , Zeolitas , Esgotos , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Cromo , Concentração de Íons de Hidrogênio
2.
Chemistry ; 29(42): e202301036, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150751

RESUMO

Hydrogen peroxide (H2 O2 ) electrosynthesis via the 2e- Oxygen Reduction Reaction (ORR) represents a highly challenging, environmentally friendly and cost-effective alternative to the current anthraquinone-based technology. Various lightweight element hetero-doped carbon nanostructures are promising and cheap metal-free electrocatalysts for H2 O2 synthesis, particularly those containing O-functionalities. The exact role of O-containing functional groups as electroactive sites for the process remains debated if not highly controversial. Herein, we have reported on the covalent exohedral functionalization of the outer surface of extra-pure multi-walled carbon nanotubes (MWCNTs) with discrete O-functional groups as a unique approach to prepare selective electrocatalysts for the process. This kind of decoration has added fundamental tiles to the puzzling structure/reactivity relationship of O-containing carbon-based catalysts for ORR, clearing doubts on the controversial role of hydroxyl/phenol groups as key functionalities for the design of more performing 2e- ORR electrocatalysts.

3.
Chem Rev ; 121(17): 10559-10665, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34255488

RESUMO

There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.


Assuntos
Compostos Inorgânicos de Carbono/química , Catálise , Porosidade , Compostos de Silício/química , Carbono , Óxidos , Dióxido de Silício/química
4.
Chemistry ; 24(50): 13170-13180, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028544

RESUMO

The metal-organic frameworks (MOFs) M(BPZNO2 ) (M=Co, Cu, Zn; H2 BPZNO2 =3-nitro-4,4'-bipyrazole) were prepared through solvothermal routes and were fully investigated in the solid state. They showed good thermal stability both under a N2 atmosphere and in air, with decomposition temperatures peaking up to 663 K for Zn(BPZNO2 ). Their crystal structure is characterized by 3D networks with square (M=Co, Zn) or rhombic (M=Cu) channels decorated by polar NO2 groups. As revealed by N2 adsorption at 77 K, they are micro-mesoporous materials with BET specific surface areas ranging from 400 to 900 m2 g-1 . Remarkably, under the mild conditions of 298 K and 1.2 bar, Zn(BPZNO2 ) adsorbs 21.8 wt % CO2 (4.95 mmol g-1 ). It shows a Henry CO2 /N2 selectivity of 15 and an ideal adsorbed solution theory (IAST) selectivity of 12 at p=1 bar. As a CO2 adsorbent, this compound is the best-performing MOF to date among those bearing a nitro group as a unique chemical tag. High-resolution powder X-ray diffraction at 298 K and different CO2 loadings revealed, for the first time in a NO2 -functionalized MOF, the insurgence of primary host-guest interactions involving the C(3)-NO2 moiety of the framework and the oxygen atoms of carbon dioxide, as confirmed by Grand Canonical Monte Carlo simulations. This interaction mode is markedly different from that observed in NH2 -functionalized MOFs, for which the carbon atom of CO2 is involved.

5.
Molecules ; 23(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941846

RESUMO

The selective oxidation of H2S to elemental sulfur was carried out on a NiS2/SiCfoam catalyst under reaction temperatures between 40 and 80 °C using highly H2S enriched effluents (from 0.5 to 1 vol.%). The amphiphilic properties of SiC foam provide an ideal support for the anchoring and growth of a NiS2 active phase. The NiS2/SiC composite was employed for the desulfurization of highly H2S-rich effluents under discontinuous mode with almost complete H2S conversion (nearly 100% for 0.5 and 1 vol.% of H2S) and sulfur selectivity (from 99.6 to 96.0% at 40 and 80 °C, respectively), together with an unprecedented sulfur-storage capacity. Solid sulfur was produced in large aggregates at the outer catalyst surface and relatively high H2S conversion was maintained until sulfur deposits reached 140 wt.% of the starting catalyst weight. Notably, the spent NiS2/SiCfoam catalyst fully recovered its pristine performance (H2S conversion, selectivity and sulfur-storage capacity) upon regeneration at 320 °C under He, and thus, it is destined to become a benchmark desulfurization system for operating in discontinuous mode.


Assuntos
Compostos Inorgânicos de Carbono/química , Sulfeto de Hidrogênio/química , Níquel/química , Compostos de Silício/química , Catálise , Temperatura Baixa , Oxirredução , Enxofre/química
6.
Chimia (Aarau) ; 71(9): 568-572, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30188286

RESUMO

The last few years have witnessed a wonderful technological renaissance that boosted the development of carbon-based nanomaterials (CNMs) doped with light heteroelements and featuring hierarchical porous architectures as valuable metal-free catalysts for a number of key industrial transformations. To date, several approaches to their synthesis have been developed, although many of them lack any real control of the final doping and composition. In contrast, chemical functionalization offers a unique and powerful tool to tailor CNMs' chemical and electronic surface properties as a function of their downstream application in catalysis. Different catalytic processes (hydrolysis/esterification/transesterification reactions, C-C bond forming reactions, CO2 derivatization into products of added value and electrochemical oxygen reduction reactions (ORR)) can be conveniently promoted by these materials. In addition, selected examples from this series offer a valuable platform for the in-depth comprehension of the underlying reaction mechanisms. This perspective article offers an overview on the main examples of ad hoc chemically decorated CNMs successfully exploited as metal-free catalysts, highlighting at the same time the importance of the surface chemistry control for the design of more active, metal-free and single-phase heterogeneous catalysts.

7.
Chemistry ; 21(43): 15349-53, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26332894

RESUMO

A series of azido-dyes were synthesized through Knoevenagel reactions of an azido-BODIPY with aromatic aldehydes. The nature of the substituents allowed the fine tuning of their spectroscopic properties. The dyes were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs), bearing terminal triple bond groups, by CuAAC reactions, affording fluorescent materials. This decoration allowed the efficient determination of the internalization of the ox-MWCNT derivatives by different model cancer cells, such as MCF7.

8.
Chemistry ; 20(12): 3487-99, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24616174

RESUMO

Neutral Y(III) dialkyl complexes supported by tridentate N(-) ,N,N monoanionic methylthiazole- or benzothiazole-amidopyridinate ligands have been prepared and completely characterized. Studies on their stability in solution revealed progressive rearrangement of the coordination sphere in the benzothiazole-containing system through an unprecedented metal-to-ligand alkyl migration and subsequent thiazole ring opening. Attempts to synthesize hydrido species from the dialkyl precursor led to the generation of a dimeric yttrium species stabilized by a trianionic N(-) ,N,N(-) ,S(-) ligand as the result of metal-to-ligand hydride migration with chemoselective thiazole ring opening and subsequent dimerization through intermolecular addition of the residual YH group to the imino fragment of a second equivalent of the ring-opened intermediate. DFT calculations were used to elucidate the thermodynamics and kinetics of the process, in support of the experimental evidence. Finally, all isolated yttrium complexes, especially their cationic forms prepared by activation with the Lewis acid Ph3 C(+) [B(C6 F5 )4 ](-) , were found to be good candidate catalysts for intramolecular hydroamination/cyclization reactions. Their catalytic performance with a number of primary and secondary amino alkenes was assessed.

9.
Environ Sci Pollut Res Int ; 31(7): 9964-9980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37405605

RESUMO

The study focuses on an Italian composting plant and aims to investigate the impact of the presence of plastic impurities in the collected biowaste on the environmental and economic performance of the plant. The study is divided into two main steps: firstly, a material flow analysis was conducted to quantify the number of impurities (e.g., conventional plastics and compostable plastics) before and after the composting process. Secondly, a life cycle assessment (LCA) and a complementary life cycle costing (LCC) of the composting process were conducted. The results of the material flow analysis confirmed the initial assumption that conventional plastic remains almost constant before and after the composting treatment, while compostable plastic almost disappears. As far as the life cycle analyses are concerned, the most environmentally damaging phases of the process were the shredding and mixing phases, while the operating costs (OPEX) contributed the most to the total annual costs of the company. Finally, a further scenario analysis was performed, assuming that the plastic contaminants in the treated biowaste consisted exclusively of compostable plastics. The comparison with this ideal scenario can support decision-makers to understand the potential improvements achievable by addressing the presence of plastic impurities in the biowaste. The results show that the treatment of plastic impurities causes relevant environmental and economic impacts, being responsible for 46% of the total waste to treat at the end of the process, almost 7% of the total annual costs covered by the plant owners, and about 30% of all negative externalities.


Assuntos
Plásticos Biodegradáveis , Compostagem , Gerenciamento de Resíduos , Animais , Análise Custo-Benefício , Estágios do Ciclo de Vida
10.
ChemSusChem ; : e202400660, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847086

RESUMO

The two-electron electrocatalytic oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2) is a valuable alternative to the more conventional and energy-intensive anthraquinone process. From a circularity viewpoint, metal-free catalysts constitute a sustainable alternative for the process. In particular, lightweight hetero-doped C-materials are cost-effective and easily scalable samples that replace - more and more frequently - the use of critical raw elements in the preparation of highly performing (electro)catalysts. Anyhow, their large-scale exploitation in industrial processes still suffers from technical limits of samples upscale and reproducibility other than a still moderate comprehension of their action mechanism in the process. This concept article offers a comprehensive and exhaustive "journey" through the most representative lightweight hetero-doped C-based electrocatalysts and their performance in the 2e- ORR process. It provides an interpretation of phenomena at the triple-phase interface of solid catalyst, liquid electrolyte and gaseous oxygen based on the doping-driven generation of ideal electronic microenvironments at the catalyst surface.

11.
Chempluschem ; : e202300785, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436555

RESUMO

This work presents the synthesis of N-doped nanoporous carbon materials using the Ionic Liquid (IL) 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM] as a fluidic carbon precursor, employing two carbonization pathways: templated precursor and pyrolysis/activation. Operando monitoring of mass loss during pyrolytic and activation treatments provides insights into chemical processes, including IL decomposition, polycondensation reactions and pore formation. Comparatively low mass reduction rates were observed at all stages. Heat treatments indicated stable pore size and increasing volume/surface area over time. The resulting N-doped carbon structures were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) and adsorbents for gases and organic vapors. Materials from the templated precursor pathway exhibited high electrocatalytic performance in ORR, analyzed using Rotating Ring-Disk electrode (RRDE). Enhanced adsorption of m-xylene was attributed to wide micropores, while satisfactory CO2 adsorption efficiency was linked to specific morphological features and a relatively high content of N-sites within the C-networks. This research contributes valuable insights into the synthesis and applications of N-doped nanoporous carbon materials, highlighting their potential in electrocatalysis and adsorption processes.

12.
Chemistry ; 19(15): 4906-21, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23418031

RESUMO

Neutral Zr(IV) and Hf(IV) diamido complexes stabilized by unsymmetrical dianionic N,C,N' pincer ligands have been prepared through the simplest and convenient direct metal-induced Caryl-H bond activation. Simple ligand modification has contributed to highlight the non-innocent role played by the donor atom set in the control of the cyclometallation kinetics. The as-prepared bis-amido catalysts were found to be good candidates for the intramolecular hydroamination/cyclization of primary aminoalkenes. The ability of these compounds to promote such a catalytic transformation efficiently (by providing, in some cases, fast and complete substrate conversion at room temperature) constitutes a remarkable step forward toward catalytic systems that can operate at relatively low catalyst loading and under milder reaction conditions. Kinetic studies and substrate-scope investigations, in conjunction with preliminary DFT calculations on the real systems, were used to elucidate the effects of the substrate substitution on the catalyst performance and to support the most reliable mechanistic path operative in the hydroamination reaction.

13.
ChemSusChem ; 16(5): e202201859, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36331078

RESUMO

Ni-based catalysts prepared through impregnation of depleted uranium oxides (DU) have successfully been employed as highly efficient, selective, and durable systems for CO2 hydrogenation to substituted natural gas (SNG; CH4 ) under an autothermal regime. The thermo-physical properties of DU and the unique electronic structure of f-block metal-oxides combined with a nickel active phase, generated an ideal catalytic assembly for turning waste energy back into useful energy for catalysis. In particular, Ni/UOx stood out for the capacity of DU matrix to control the extra heat (hot-spots) generated at its surface by the highly exothermic methanation process. At odds with the benchmark Ni/γ-Al2 O3 catalyst, the double action played by DU as a "thermal mass" and "dopant" for the nickel active phase unveiled the unique performance of Ni/UOx composites as CO2 methanation catalysts. The ability of the weakly radioactive ceramic (UOx ) to harvest waste heat for more useful purposes was demonstrated in practice within a rare example of a highly effective and long-term methanation operated under autothermal regime (i. e., without any external heating source). This finding is an unprecedented example that allows a real step-forward in the intensification of "low-temperature" methanation with an effective reduction of energy wastes. At the same time, the proposed catalytic technology can be regarded as an original approach to recycle and bring to a second life a less-severe nuclear by-product (DU), providing a valuable alternative to its more costly long-term storage or controlled disposal.

14.
ChemSusChem ; 16(5): e202300238, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36905108

RESUMO

Invited for this month's cover are collaborating teams from academia-the French ICPEES and IS2M of Centre national de la recherche scientifique (CNRS) and the Italian ICCOM of Consiglio Nazionale delle Ricerche (CNR)-and industry with the participation of the ORANO group. The cover picture shows a CO2 -to-CH4 process promoted by nickel nanoparticles supported on depleted uranium oxide under exceptionally low temperature values or autothermal conditions. The Research Article itself is available at 10.1002/cssc.202201859.

15.
Chemistry ; 18(2): 671-87, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22147645

RESUMO

This work provides original insights to the better understanding of the complex structure-activity relationship of Zr(IV)-pyridylamido-based olefin polymerization catalysts and highlights the importance of the metal-precursor choice (Zr(NMe(2))(4) vs. Zr(Bn)(4)) to prepare precatalysts of unambiguous identity. A temperature-controlled and reversible σ-bond metathesis/protonolysis reaction is found to take place on the Zr(IV)-amido complexes in the 298-383 K temperature range, changing the metal coordination sphere dramatically (from a five-coordinated tris-amido species stabilized by bidentate monoanionic {N,N(-)} ligands to a six-coordinated bis-amido-mono-amino complexes featured by tridentate dianionic {N(-),N,C(-)} ligands). Well-defined neutral Zr(IV)-pyridylamido complexes have been prepared from Zr(Bn)(4) as metal source. Their cationic derivatives [Zr(IV) N(-),N,C(-)}Bn](+)[B(C(6)F(5))(4)](-) have been successfully applied to the room-temperature polymerization of 1-hexene with productivities up to one order of magnitude higher than those reported for the related Hf(IV) state-of-the-art systems. Most importantly, a linear increase of the poly(1-hexene) M(n) values (30-250 kg mol(-1)) has been observed upon catalyst aging. According to that, the major active species (responsible for the increased M(n) polymer values) in the aged catalyst solution, has been identified.

16.
Chemistry ; 18(27): 8454-63, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22639433

RESUMO

Organic functionalization of carbon nanotube sidewalls is a tool of primary importance in material science and nanotechnology, equally from a fundamental and an applicative point of view. Here, an efficient and versatile approach for the organic/organometallic functionalization of single-walled carbon nanotubes (SWCNTs) capable of imparting multimodality to these fundamental nanostructures, is described. Our strategy takes advantage of well-established Cu-mediated acetylene-azide coupling (CuAAC) reactions applied to phenylazido-functionalized SWCNTs for their convenient homo-/heterodecoration with a number of organic/organometallic frameworks, or mixtures thereof, bearing terminal acetylene pendant arms. Phenylazido-decorated SWCNTs were prepared by chemoselective arylation of the CNT sidewalls with diazonium salts under mild conditions, and subsequently used for the copper-mediated cycloaddition protocol in the presence of terminal acetylenes. The latter reaction was performed in one step by using either single acetylene derivatives or equimolar mixtures of terminal alkynes bearing either similar functional groups (masked with orthogonally cleavable protecting groups) or easily distinguishable functionalities (on the basis of complementary analytical/spectroscopic techniques). All materials and intermediates were characterized with respect to their most relevant aspects/properties by TEM microscopy, thermogravimetric analysis coupled with MS analysis of volatiles (TG-MS), elemental analysis, cyclic voltammetry (CV), Raman and UV/Vis spectroscopy. The functional loading and related chemical grafting of both primary amino- and ferrocene-decorated SWCNTs were spectroscopically (UV/Vis, Kaiser test) and electrochemically (CV) determined, respectively.

17.
Bioresour Technol ; 361: 127716, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926558

RESUMO

Dairy products, extra virgin olive oil, red and white wines are excellent food products, appreciated all around the world. Their productions generate large amounts of by-products which urge for recycling and valorization. Moreover, another abundant waste stream produced in urban context is the Organic Fraction of Municipal Solid Wastes (OFMSW), whose global annual capita production is estimated at 85 kg. The recent environmental policies encourage their exploitation in a biorefinery loop to produce Volatile Fatty Acids (VFAs) and polyhydroxyalkanoates (PHAs). Typically, VFAs yields are high from cheese whey and OFMSW (0.55-0.90 gCOD_VFAs/gCOD), lower for Olive Mill and Winery Wastewaters. The VFAs conversion into PHAs can achieve values in the range 0.4-0.5 gPHA/gVSS for cheese whey and OFMSW, 0.6-0.7 gPHA/gVSS for winery wastewater, and 0.2-0.3 gPHA/gVSS for olive mill wastewaters. These conversion yields allowed to estimate a huge potential annual PHAs production of about 260 M tons.


Assuntos
Olea , Poli-Hidroxialcanoatos , Reatores Biológicos , Ácidos Graxos Voláteis , Resíduos Sólidos , Águas Residuárias
18.
ACS Appl Mater Interfaces ; 13(49): 58982-58993, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854665

RESUMO

Solvent-assisted ligand incorporation (SALI) of the ditopic linker 5-carboxy-3-(4-carboxybenzyl)thiazolium bromide [(H2PhTz)Br] into the zirconium metal-organic framework NU-1000 [Zr6O4(OH)8(H2O)4(TBAPy)2, where NU = Northwestern University and H4TBAPy = 1,3,6,8-tetrakis(p-benzoic-acid)pyrene], led to the SALIed NU-1000-PhTz material of minimal formula [Zr6O4(OH)6(H2O)2(TBAPy)2(PhTz)]Br. NU-1000-PhTz has been thoroughly characterized in the solid state. As confirmed by powder X-ray diffraction, this material keeps the same three-dimensional architecture of NU-1000 and the dicarboxylic extra linker bridges adjacent [Zr6] nodes ca. 8 Å far apart along the crystallographic c-axis. The functionalized MOF has a BET specific surface area of 1560 m2/g, and it is featured by a slightly higher thermal stability than its parent material (Tdec = 820 vs. 800 K, respectively). NU-1000-PhTz has been exploited for the capture and separation of two pollutant gases: carbon dioxide (CO2) and nitrous oxide (N2O). The high thermodynamic affinity for both gases [isosteric heat of adsorption (Qst) = 25 and 27 kJ mol-1 for CO2 and N2O, respectively] reasonably stems from the strong interactions between these (polar) "stick-like" molecules and the ionic framework. Intriguingly, NU-1000-PhTz shows an unprecedented temperature-dependent adsorption capacity, loading more N2O in the 298 K ≤ T ≤ 313 K range but more CO2 at temperatures falling out of this range. Grand canonical Monte Carlo simulations of the adsorption isotherms confirmed that the preferential adsorption sites of both gases are the triangular channels (micropores) in close proximity to the polar pillar. While CO2 interacts with the thiazolium ring in an "end-on" fashion through its O atoms, N2O adopts a "side-on" configuration through its three atoms simultaneously. These findings open new horizons in the discovery of functional materials that may discriminate between polluting gases through selective adsorption at different temperatures.

19.
ChemSusChem ; 13(20): 5468-5479, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32871050

RESUMO

In this work, we joined highly Ni-loaded γ-Al2 O3 composites, straightforwardly prepared by impregnation methods, with an induction heating setup suited to control, almost in real-time, any temperature swing at the catalyst sites (i. e., "hot spots" ignition) caused by an exothermic reaction at the heart of the power-to-gas (P2G) chain: CO2 methanation. We have shown how the combination of a poor thermal conductor (γ-Al2 O3 ) as support for large and highly interconnected nickel aggregates together with a fast heat control of the temperature at the catalytic bed allow part of the extra-heat generated by the reaction exothermicity to be reused for maintaining the catalyst under virtual isothermal conditions, hence reducing the reactor power supply. Most importantly, a highly efficient methanation scheme for substitute natural gas (SNG) production (X CO 2 up 98 % with >99 % S CH 4 ) under operative temperatures (150-230 °C) much lower than those commonly required with traditional heating setup has been proposed. As far as sustainable and environmental issues are concerned, this approach re-evaluates industrially attractive composites (and their large-scale preparation methods) for application to key processes at the heart of P2G chain while providing robust catalysts for which risks associated to nano-objects leaching phenomena are markedly reduced if not definitively suppressed.

20.
Beilstein J Nanotechnol ; 10: 1217-1227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293859

RESUMO

The rational design and synthesis of covalent triazine frameworks (CTFs) from defined dicyano-aryl building blocks or their binary mixtures is of fundamental importance for a judicious tuning of the chemico-physical and morphological properties of this class of porous organic polymers. In fact, their gas adsorption capacity and their performance in a variety of catalytic transformations can be modulated through an appropriate selection of the building blocks. In this contribution, a set of five CTFs (CTF1-5) have been prepared under classical ionothermal conditions from single dicyano-aryl or heteroaryl systems. The as-prepared samples are highly micro-mesoporous and thermally stable materials featuring high specific surface area (up to 1860 m2·g-1) and N content (up to 29.1 wt %). All these features make them highly attractive samples for carbon capture and sequestration (CCS) applications. Indeed, selected polymers from this series rank among the CTFs with the highest CO2 uptake at ambient pressure reported so far in the literature (up to 5.23 and 3.83 mmol·g-1 at 273 and 298 K, respectively). Moreover, following our recent achievements in the field of steam- and oxygen-free dehydrogenation catalysis using CTFs as metal-free catalysts, the new samples with highest N contents have been scrutinized in the process to provide additional insights to their complex structure-activity relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA