Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(9): 768-786, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38280232

RESUMO

In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Autossômica Dominante , Humanos , Atrofia Óptica Autossômica Dominante/genética , Mutação , Autofagia/genética , Fibroblastos , GTP Fosfo-Hidrolases/genética
2.
Hum Mol Genet ; 32(2): 333-350, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35994048

RESUMO

Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas Mitocondriais , Animais , Proliferação de Células/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Humanos
3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569667

RESUMO

Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the most common form of primordial dwarfism. MOPD clinical features include severe prenatal and postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII with the aim of exploring whether differentially expressed genes and previously uncharacterized gene variants, in addition to PCNT pathogenic variants, could be associated with the complex phenotype of this disease. We discovered a downregulation of key factors involved in growth, such as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular characterization of the complex genotypic background of MOPDII.


Assuntos
Nanismo , Microcefalia , Osteocondrodisplasias , Humanos , Feminino , Gravidez , Microcefalia/genética , Exoma/genética , Transcriptoma , Retardo do Crescimento Fetal/genética , Nanismo/genética , Osteocondrodisplasias/genética , Genótipo , Mutação
4.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974870

RESUMO

Chemosensitivity is a crucial feature for all tumours so that they can be successfully treated, but the huge heterogeneity of these diseases, to be intended both inter- and intra-tumour, makes it a hard-to-win battle. Indeed, this genotypic and phenotypic variety, together with the adaptability of tumours, results in a plethora of chemoresistance acquisition mechanisms strongly affecting the effectiveness of treatments at different levels. Tripartite motif (TRIM) proteins are shown to be involved in some of these mechanisms thanks to their E3-ubiquitin ligase activity, but also to other activities they can exert in several cellular pathways. Undoubtedly, the ability to regulate the stability and activity of the p53 tumour suppressor protein, shared by many of the TRIMs, represents the preeminent link between this protein family and chemoresistance. Indeed, they can modulate p53 degradation, localization and subset of transactivated target genes, shifting the cellular response towards a cytoprotective or cytotoxic reaction to whatever damage induced by therapy, sometimes in a cellular-dependent way. The involvement in other chemoresistance acquisition mechanisms, independent by p53, is known, affecting pivotal processes like PI3K/Akt/NF-κB signalling transduction or Wnt/beta catenin pathway, to name a few. Hence, the inhibition or the enhancement of TRIM proteins functionality could be worth investigating to better understand chemoresistance and as a strategy to increase effectiveness of anticancer therapies.


Assuntos
Neoplasias/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas com Motivo Tripartido/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
BMC Med Genet ; 19(1): 129, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053855

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) associated with mutations in mitochondrial DNA (mtDNA) typically manifests only optic nerve involvement but in some patients may develop additional neurological complications. The cause of this association is not clear. CASE PRESENTATION: We present a case of a 24-year-old male with a history of subacute, painless, and rapidly progressive bilateral vision loss. We performed ophthalmological, neurological and neuropsychological investigations in the proband and his LHON family. The proband showed optic neuropathy, epilepsy, migraine, and intellectual disability; all the maternal relatives did not manifest optic neuropathy but a moderate to severe intellectual disability. Genetic screening revealed a novel association of the LHON m.3460G > A primary mutation with the m.T961delT + C(n)ins within the mitochondrial encoded 12S RNA (MTRNR1) gene which segregates with the intellectual disability through the maternal branch of the family. We also found a significant increase of mtDNA content in all the unaffected homo/heteroplasmic mutation carriers with respect to either affected or control subjects. CONCLUSION: This is the first case reporting the co-segregation of a mutation in MTRNR1 gene with a LHON primary mutation, which may be a risk factor of the extraocular signs complicating LHON phenotype. In addition, the data herein reported, confirmed that the key factor modulating the penetrance of optic atrophy in the family is the amount of mtDNA.


Assuntos
DNA Mitocondrial/genética , Epilepsia/genética , Deficiência Intelectual/genética , Mutação/genética , Atrofia Óptica Hereditária de Leber/genética , RNA Ribossômico/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Mitocôndrias/genética , Linhagem , Penetrância , Adulto Jovem
6.
Mol Cancer ; 16(1): 67, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327152

RESUMO

BACKGROUND: TRIM8 plays a key role in controlling the p53 molecular switch that sustains the transcriptional activation of cell cycle arrest genes and response to chemotherapeutic drugs. The mechanisms that regulate TRIM8, especially in cancers like clear cell Renal Cell Carcinoma (ccRCC) and colorectal cancer (CRC) where it is low expressed, are still unknown. However, recent studies suggest the potential involvement of some microRNAs belonging to miR-17-92 and its paralogous clusters, which could include TRIM8 in a more complex pathway. METHODS: We used RCC and CRC cell models for in-vitro experiments, and ccRCC patients and xenograft transplanted mice for in vivo assessments. To measure microRNAs levels we performed RT-qPCR, while steady-states of TRIM8, p53, p21 and N-MYC were quantified at protein level by Western Blotting as well as at transcript level by RT-qPCR. Luciferase reporter assays were performed to assess the interaction between TRIM8 and specific miRNAs, and the potential effects of this interaction on TRIM8 expression. Moreover, we treated our cell models with conventional chemotherapeutic drugs or tyrosine kinase inhibitors, and measured their response in terms of cell proliferation by MTT and colony suppression assays. RESULTS: We showed that TRIM8 is a target of miR-17-5p and miR-106b-5p, whose expression is promoted by N-MYC, and that alterations of their levels affect cell proliferation, acting on the TRIM8 transcripts stability, as confirmed in ccRCC patients and cell lines. In addition, reducing the levels of miR-17-5p/miR-106b-5p, we increased the chemo-sensitivity of RCC/CRC-derived cells to anti-tumour drugs used in the clinic. Intriguingly, this occurs, on one hand, by recovering the p53 tumour suppressor activity in a TRIM8-dependent fashion and, on the other hand, by promoting the transcription of miR-34a that turns off the oncogenic action of N-MYC. This ultimately leads to cell proliferation reduction or block, observed also in colon cancer xenografts overexpressing TRIM8. CONCLUSIONS: In this paper we provided evidence that TRIM8 and its regulators miR-17-5p and miR-106b-5 participate to a feedback loop controlling cell proliferation through the reciprocal modulation of p53, miR-34a and N-MYC. Our experiments pointed out that this axis is pivotal in defining drug responsiveness of cancers such ccRCC and CRC.


Assuntos
Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Interferência de RNA , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Front Aging Neurosci ; 16: 1437278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086756

RESUMO

Introduction: The deregulation of lncRNAs expression has been associated with neuronal damage in Alzheimer's disease (AD), but how or whether they can influence its onset is still unknown. We investigated 2 RNA-seq datasets consisting, respectively, of the hippocampal and fusiform gyrus transcriptomic profile of AD patients, matched with non-demented controls. Methods: We performed a differential expression analysis, a gene correlation network analysis (WGCNA) and a pathway enrichment analysis of two RNA-seq datasets. Results: We found deregulated lncRNAs in common between hippocampus and fusiform gyrus and deregulated gene groups associated to functional pathways related to neurotransmission and memory consolidation. lncRNAs, co-expressed with known AD-related coding genes, were identified from the prioritized modules of both brain regions. Discussion: We found common deregulated lncRNAs in the AD hippocampus and fusiform gyrus, that could be considered common signatures of AD pathogenesis, providing an important source of information for understanding the molecular changes of AD.

8.
J Mol Med (Berl) ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294414

RESUMO

COVID-19 pandemic is caused by the SARS-CoV-2 virus, whose internalization and infection are mediated by the angiotensin-converting enzyme 2 (ACE2). The identification of novel approaches to tackle this step is instrumental for the development of therapies for the management of COVID-19 and other diseases with a similar mechanism of infection. Thalidomide, a drug sadly known for its teratogenic effects, has potent immunomodulatory and anti-inflammatory properties. Treatment with this drug has been shown to improve the immune functions of COVID-19 patients and proposed for the management of COVID-19 in clinical practice through drug repositioning. Here, we investigated the molecular details linking thalidomide to ACE2 and COVID-19, showing that in conditions mimicking SARS-CoV-2-associated cytokine storm, the transcription factor ΔNp63α and ACE2 are stabilized, and IL-8 production is increased. In such conditions, we found p63 to bind to and regulate the expression of the ACE2 gene. We previously showed that ΔNp63α is degraded upon thalidomide treatment and now found that treatment with this drug-or with its analogue lenalidomide-downregulates ACE2 in a p63-dependent manner. Finally, we found that thalidomide treatment reduces in vitro infection by pseudo-SARS-CoV-2, a baculovirus pseudotyped with the SARS-CoV-2 spike protein. Overall, we propose the dual effect of thalidomide in reducing SARS-CoV-2 viral re-entry and inflammation through p63 degradation to weaken SARS-CoV-2 entry into host cells and mitigate lung inflammation, making it a valuable option in clinical management of COVID-19. KEY MESSAGES: Thalidomide treatment results in p63-dependent ACE2 downregulation. ACE2 is a p63 transcriptional target. Thalidomide reduces the "cytokine storm" associated to COVID-19. Thalidomide prevents viral re-entry of SARS-CoV-2 by p63-dependent ACE2 downregulation. Thalidomide is a modulator of SARS-CoV-2 or other ACE2-dependent infections. ACE2 is modulated by a pharmacological substance.

9.
Pathol Res Pract ; 262: 155491, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126835

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important regulators of gene expression, involved in various biological pathways. Aberrant miRNAs expression is associated with the onset and progression of colorectal cancer (CRC). The aim of this study was to investigate the correlation between five miRNAs (miR-29a, miR-101, miR-125b, miR-146a, and miR-155), found to be deregulated in tissue samples of CRC patients, and clinicopathological characteristics and histological markers. Analysis of histological markers was performed by immunohistochemical staining of tumour tissues with Ki-67, p53, CD34, and Bcl-2. Our findings revealed a significant negative correlation between miR-29a expression and Bcl-2 levels. Furthermore, high miR-29a expression was associated with a lower incidence of distant metastasis in CRC patients. We observed negative correlations between miR-101 expression and the number of lymph nodes with metastasis, as well as the size of the largest metastasis; miR-125b expression and lymphovascular invasion; and miR-155 expression and mucus presence. Our survival analysis demonstrated that high miR-29a expression correlated with better progression-free survival of CRC patients, underscoring its potential as a prognostic marker. Our study unveiled intricate relationships between specific miRNA expressions and clinicopathological features in CRC, highlighting the potential utility of miR-29a as a valuable prognostic biomarker.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , MicroRNAs , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Feminino , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Idoso , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso de 80 Anos ou mais
10.
BMC Genomics ; 14: 855, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24308330

RESUMO

BACKGROUND: Recent studies have demonstrated an unexpected complexity of transcription in eukaryotes. The majority of the genome is transcribed and only a little fraction of these transcripts is annotated as protein coding genes and their splice variants. Indeed, most transcripts are the result of antisense, overlapping and non-coding RNA expression. In this frame, one of the key aims of high throughput transcriptome sequencing is the detection of all RNA species present in the cell and the first crucial step for RNA-seq users is represented by the choice of the strategy for cDNA library construction. The protocols developed so far provide the utilization of the entire library for a single sequencing run with a specific platform. RESULTS: We set up a unique protocol to generate and amplify a strand-specific cDNA library representative of all RNA species that may be implemented with all major platforms currently available on the market (Roche 454, Illumina, ABI/SOLiD). Our method is reproducible, fast, easy-to-perform and even allows to start from low input total RNA. Furthermore, we provide a suitable bioinformatics tool for the analysis of the sequences produced following this protocol. CONCLUSION: We tested the efficiency of our strategy, showing that our method is platform-independent, thus allowing the simultaneous analysis of the same sample with different NGS technologies, and providing an accurate quantitative and qualitative portrait of complex whole transcriptomes.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Anotação de Sequência Molecular
11.
Neurosci Biobehav Rev ; 149: 105156, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019246

RESUMO

Children and adolescents with neurodevelopmental disorders generally show adaptive, cognitive and motor skills impairments associated with behavioral problems, i.e., alterations in attention, anxiety and stress regulation, emotional and social relationships, which strongly limit their quality of life. This narrative review aims at providing a critical overview of the current knowledge in the field of serious games (SGs), known as digital instructional interactive videogames, applied to neurodevelopmental disorders. Indeed, a growing number of studies is drawing attention to SGs as innovative and promising interventions in managing neurobehavioral and cognitive disturbs in children with neurodevelopmental disorders. Accordingly, we provide a literature overview of the current evidence regarding the actions and the effects of SGs. In addition, we describe neurobehavioral alterations occurring in some specific neurodevelopmental disorders for which a possible therapeutic use of SGs has been suggested. Finally, we discuss findings obtained in clinical trials using SGs as digital therapeutics in neurodevelopment disorders and suggest new directions and hypotheses for future studies to bridge the gaps between clinical research and clinical practice.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Qualidade de Vida , Transtornos do Neurodesenvolvimento/terapia , Relações Interpessoais , Ansiedade
12.
Oncol Lett ; 25(6): 267, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37216163

RESUMO

Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.

13.
J Alzheimers Dis ; 90(2): 625-638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155522

RESUMO

BACKGROUND: Pathological and clinical features of Alzheimer's disease (AD) are in temporal discrepancy and currently accepted clinical tests provide the diagnosis decades after the initial pathophysiological events. In order to enable a more timely detection of AD, research efforts are directed to identification of biomarkers of the early symptomatic stage. Neuroinflammatory signaling pathways and inflammation-related microRNAs (miRNAs) could possibly have a crucial role in AD, making them promising potential biomarkers. OBJECTIVE: We examined the expression of circulatory miRNAs with a documented role in AD pathophysiology: miR-29a/b, miR-101, miR-125b, miR-146a, and miR-155 in the plasma of AD patients (AD, n = 12), people with mild cognitive impairment (MCI, n = 9), and normocognitive group (CTRL, n = 18). We hypothesized that these miRNA expression levels could correlate with the level of participants' cognitive decline. METHODS: The study participants completed the standardized interview, neurological examination, neuropsychological assessment, and biochemical analyses. miRNA expression levels were assessed by RT-PCR. RESULTS: Neurological and laboratory findings could not account for MCI, but miR-146a and -155 were upregulated in the MCI group compared to the control. miR-146a, known to mediate early neuroinflammatory AD events, was also upregulated in the MCI compared to AD group. ROC curve analysis for miRNA-146a showed 77.8% sensitivity and 94.4% specificity and 66.7% sensitivity and 88.9% specificity for miR-155. CONCLUSION: Determination of circulatory inflamma-miRs-146a and -155 expression, together with neuropsychological screening, could become a non-invasive tool for detecting individuals with an increased risk for AD, but research on a larger cohort is warranted.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , MicroRNAs , Idoso , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Inflamação/genética , MicroRNAs/metabolismo , Montenegro
14.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36497215

RESUMO

The TP53 tumor suppressor gene is known as the guardian of the genome, playing a pivotal role in controlling genome integrity, and its functions are lost in more than 50% of human tumors due to somatic mutations. This percentage rises to 90% if mutations and alterations in the genes that code for regulators of p53 stability and activity are taken into account. Renal cell carcinoma (RCC) is a clear example of cancer that despite having a wild-type p53 shows poor prognosis because of the high rate of resistance to radiotherapy or chemotherapy, which leads to recurrence, metastasis and death. Remarkably, the fact that p53 is poorly mutated does not mean that it is functionally active, and increasing experimental evidences have demonstrated this. Therefore, RCC represents an extraordinary example of the importance of p53 pathway alterations in therapy resistance. The search for novel molecular biomarkers involved in the pathways that regulate altered p53 in RCC is mandatory for improving early diagnosis, evaluating the prognosis and developing novel potential therapeutic targets for better RCC treatment.

15.
Cells ; 11(22)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428997

RESUMO

YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.


Assuntos
Neoplasias Colorretais , Lectinas , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Biomarcadores Tumorais , Células CACO-2 , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Neoplasias Colorretais/metabolismo , Lectinas/genética , Lectinas/metabolismo , Fenótipo , Estudos Retrospectivos , Regulação para Cima
16.
Biochem J ; 431(2): 299-310, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20698827

RESUMO

A central role for mitochondrial dysfunction has been proposed in the pathogenesis of DS (Down's syndrome), a multifactorial disorder caused by trisomy of human chromosome 21. To explore whether and how abnormalities in mitochondrial energy metabolism are involved in DS pathogenesis, we investigated the catalytic properties, gene expression and protein levels of certain proteins involved in mitochondrial ATP synthesis, such as F1F0-ATPase, ANT (adenine nucleotide translocator) and AK (adenylate kinase), in DS-HSF (human skin fibroblasts with trisomic karyotype), comparing them with euploid fibroblasts. In DS-HSF, we found a strong impairment of mitochondrial ATP synthesis due to a reduction in the catalytic efficiency of each of the investigated proteins. This impairment occurred in spite of unchanged gene expression and an increase in ANT and AK protein content, whereas the amount of ATPase subunits was selectively reduced. Interestingly, exposure of DS-HSF to dibutyryl-cAMP, a permanent derivative of cAMP, stimulated ANT, AK and ATPase activities, whereas H89, a specific PKA (protein kinase A) inhibitor, suppressed this cAMPdependent activation, indicating an involvement of the cAMP/PKA-mediated signalling pathway in the ATPase, ANT and AK deficit. Consistently, DS-HSF showed decreased basal levels of cAMP and reduced PKA activity. Despite the impairment of mitochondrial energy apparatus, no changes in cellular energy status, but increased basal levels of L-lactate, were found in DS-HSF, which partially offset for the mitochondrial energy deficit by increasing glycolysis and mitochondrial mass.These results provide new insight into the molecular basis for mitochondrial dysfunction in DS and might provide a molecular explanation for some clinical features of the syndrome.


Assuntos
Adenilato Quinase/metabolismo , Metabolismo Energético/genética , Fibroblastos/enzimologia , Mitocôndrias/enzimologia , Translocases Mitocondriais de ADP e ATP/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trissomia/genética , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/genética , Linhagem Celular , Respiração Celular/genética , Cromossomos Humanos Par 21/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Mitocondrial/metabolismo , Fibroblastos/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Cinética , Ácido Láctico/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Fosforilação Oxidativa , ATPases Translocadoras de Prótons/genética , Pele/patologia
17.
Nucleic Acids Res ; 37(18): 6092-104, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700772

RESUMO

p63 belongs to a family of transcription factors, which, while demonstrating striking conservation of functional domains, regulate distinct biological functions. Its principal role is in the regulation of epithelial commitment, differentiation and maintenance programs, during embryogenesis and in adult tissues. The p63 gene has a complex transcriptional pattern, producing two subclasses of N-terminal isoforms (TA and DeltaN) which are alternatively spliced at the C-terminus. Here, we report the identification of two new C-terminus p63 variants, we named p63 delta and epsilon, that increase from 6 to 10 the number of the p63 isoforms. Expression analysis of all p63 variants demonstrates a tissue/cell-type-specific nature of p63 alternative transcript expression, probably related to their different cellular functions. We demonstrate that the new p63 variants as DeltaN isoforms are active as transcription factors as they have nuclear localization and can modulate the expression of p63 target genes. Moreover, we report that, like DeltaNp63alpha, DeltaNp63delta and epsilon sustain cellular proliferation and that their expression decreases during keratinocyte differentiation, suggesting their involvement in this process. Taken together, our results demonstrate the existence of novel p63 proteins whose expression should be considered in future studies on the roles of p63 in the regulation of cellular functions.


Assuntos
Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Algoritmos , Processamento Alternativo , Sequência de Aminoácidos , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transativadores/genética , Fatores de Transcrição , Transcrição Gênica , Ativação Transcricional , Proteínas Supressoras de Tumor/genética
18.
Biomedicines ; 9(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673719

RESUMO

Colorectal cancer (CRC) represents one of the most widespread forms of cancer in the population and, as all malignant tumors, often develops resistance to chemotherapies with consequent tumor growth and spreading leading to the patient's premature death. For this reason, a great challenge is to identify new therapeutic targets, able to restore the drugs sensitivity of cancer cells. In this review, we discuss the role of TRIpartite Motifs (TRIM) proteins in cancers and in CRC chemoresistance, focusing on the tumor-suppressor role of TRIM8 protein in the reactivation of the CRC cells sensitivity to drugs currently used in the clinical practice. Since the restoration of TRIM8 protein levels in CRC cells recovers chemotherapy response, it may represent a new promising therapeutic target in the treatment of CRC.

19.
Cells ; 10(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807506

RESUMO

The superfamily of TRIM (TRIpartite Motif-containing) proteins is one of the largest groups of E3 ubiquitin ligases. Among them, interest in TRIM8 has greatly increased in recent years. In this review, we analyze the regulation of TRIM8 gene expression and how it is involved in many cell reactions in response to different stimuli such as genotoxic stress and attacks by viruses or bacteria, playing a central role in the immune response and orchestrating various fundamental biological processes such as cell survival, carcinogenesis, autophagy, apoptosis, differentiation and inflammation. Moreover, we show how TRIM8 functions are not limited to ubiquitination, and contrasting data highlight its role either as an oncogene or as a tumor suppressor gene, acting as a "double-edged weapon". This is linked to its involvement in the selective regulation of three pivotal cellular signaling pathways: the p53 tumor suppressor, NF-κB and JAK-STAT pathways. Lastly, we describe how TRIM8 dysfunctions are linked to inflammatory processes, autoimmune disorders, rare developmental and cardiovascular diseases, ischemia, intellectual disability and cancer.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ubiquitinação/genética , Humanos
20.
Mol Cancer ; 9: 230, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20813049

RESUMO

BACKGROUND: Many evidences report that alternative splicing, the mechanism which produces mRNAs and proteins with different structures and functions from the same gene, is altered in cancer cells. Thus, the identification and characterization of cancer-specific splice variants may give large impulse to the discovery of novel diagnostic and prognostic tumour biomarkers, as well as of new targets for more selective and effective therapies. RESULTS: We present here a genome-wide analysis of the alternative splicing pattern of human genes through a computational analysis of normal and cancer-specific ESTs from seventeen anatomical groups, using data available in AspicDB, a database resource for the analysis of alternative splicing in human. By using a statistical methodology, normal and cancer-specific genes, splice sites and cassette exons were predicted in silico. The condition association of some of the novel normal/tumoral cassette exons was experimentally verified by RT-qPCR assays in the same anatomical system where they were predicted. Remarkably, the presence in vivo of the predicted alternative transcripts, specific for the nervous system, was confirmed in patients affected by glioblastoma. CONCLUSION: This study presents a novel computational methodology for the identification of tumor-associated transcript variants to be used as cancer molecular biomarkers, provides its experimental validation, and reports specific biomarkers for glioblastoma.


Assuntos
Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Genoma Humano/genética , Neoplasias/genética , Processamento Alternativo/genética , Estudo de Associação Genômica Ampla , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA