Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Circ Res ; 132(7): 812-827, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36876485

RESUMO

BACKGROUND: The rupture of atherosclerotic plaque contributes significantly to cardiovascular disease. Plasma concentrations of bilirubin-a byproduct of heme catabolism-inversely associate with risk of cardiovascular disease, although the link between bilirubin and atherosclerosis remains unclear. METHODS: To assess the role of bilirubin in atherosclerotic plaque stability, we crossed Bvra-/- with Apoe-/- mice and used the tandem stenosis model of plaque instability. Human coronary arteries were obtained from heart transplant recipients. Analysis of bile pigments, heme metabolism, and proteomics were performed by liquid chromatography tandem mass spectrometry. MPO (myeloperoxidase) activity was determined by in vivo molecular magnetic resonance imaging, liquid chromatography tandem mass spectrometry analysis, and immunohistochemical determination of chlorotyrosine. Systemic oxidative stress was evaluated by plasma concentrations of lipid hydroperoxides and the redox status of circulating Prx2 (peroxiredoxin 2), whereas arterial function was assessed by wire myography. Atherosclerosis and arterial remodeling were quantified by morphometry and plaque stability by fibrous cap thickness, lipid accumulation, infiltration of inflammatory cells, and the presence of intraplaque hemorrhage. RESULTS: Compared with Bvra+/+Apoe-/- tandem stenosis littermates, Bvra-/-Apoe-/- tandem stenosis mice were deficient in bilirubin, showed signs of increased systemic oxidative stress, endothelial dysfunction, as well as hyperlipidemia, and had a higher atherosclerotic plaque burden. Heme metabolism was increased in unstable compared with stable plaque of both Bvra+/+Apoe-/- and Bvra-/-Apoe-/- tandem stenosis mice and in human coronary plaques. In mice, Bvra deletion selectively destabilized unstable plaque, characterized by positive arterial remodeling and increased cap thinning, intraplaque hemorrhage, infiltration of neutrophils, and MPO activity. Proteomic analysis confirmed Bvra deletion enhanced extracellular matrix degradation, recruitment and activation of neutrophils, and associated oxidative stress in unstable plaque. CONCLUSIONS: Bilirubin deficiency, resulting from global Bvra deletion, generates a proatherogenic phenotype and selectively enhances neutrophil-mediated inflammation and destabilization of unstable plaque, thereby providing a link between bilirubin and cardiovascular disease risk.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/patologia , Bilirrubina , Constrição Patológica , Proteômica , Aterosclerose/metabolismo , Antioxidantes , Hemorragia , Heme , Apolipoproteínas E , Lipídeos , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445903

RESUMO

Near-infrared autofluorescence (NIRAF) in unstable atherosclerotic plaque has been suggested as a novel imaging technology for high-risk atherosclerosis. Intraplaque hemorrhage (IPH) and bilirubin, derived from the subsequent degradation of heme, have been proposed as the source of NIRAF, although their roles and the underlying mechanism responsible for NIRAF remain unclear. To test the proposed role of bilirubin as the source of NIRAF in high-risk atherosclerosis, Biliverdin reductase a gene and apolipoprotein E gene double-knockout (Bvra-/-Apoe-/-) mice were subjected to the Western diet and tandem stenosis (TS) surgery, as a model of both bilirubin deficiency and plaque instability. Human coronary arteries containing atherosclerotic plaques were obtained from heart transplant recipients. The NIRAF was determined by in vivo fluorescence emission computed tomography, and ex vivo infrared imaging. The cholesterol content was quantified by HPLC with UV detection. In Bvra+/+Apoe-/- TS mice, the NIRAF intensity was significantly higher in unstable plaque than in stable plaque, yet the NIRAF in unstable plaque was undistinguishable in Bvra+/+Apoe-/- and littermate Bvra-/-Apoe-/- TS mice. Moreover, the unstable plaque in TS mice exhibited a lower NIRAF compared with highly cellular plaque that lacked most of the features of unstable plaque. In human coronary arteries, the NIRAF associated with cholesterol-rich, calcified lesions, rather than just cholesterol-rich lesions. The NIRAF in atherosclerotic plaque can be dissociated from IPH and bilirubin, such that the compositional meaning of an elevated NIRAF remains obscure.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/patologia , Bilirrubina , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Aterosclerose/complicações , Hemorragia/patologia , Apolipoproteínas E/genética
3.
Arterioscler Thromb Vasc Biol ; 41(1): 317-330, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207934

RESUMO

OBJECTIVE: Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body's response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. Approach and Results: Hmox1 deficient (Hmox1-/-) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1-/- mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1-/- mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1-/- fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1-/- fibroblasts in response to hypoxia. CONCLUSIONS: Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1's protection against ischemic injury independent of neovascularization.


Assuntos
Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/enzimologia , Proteínas de Membrana/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Glucose/metabolismo , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Membro Posterior , Isquemia/genética , Isquemia/patologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout , Músculo Esquelético/patologia , Necrose , Estabilidade Proteica , Fluxo Sanguíneo Regional , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
4.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364372

RESUMO

The 2-imidazoline nitroxide derivatives of cymantrene-2-(η5-cyclopentadienyl)tricarbonylmanganese(I)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (NNMn) and 2-(η5-cyclopentadienyl)tricarbonylmanganese(I)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl (INMn) were synthesized. It was shown that NNMn and INMn exhibit a sufficiently high kinetic stability both in solids and in solutions under normal conditions. Their structural characteristics, magnetic properties and electrochemical behavior are close to Re(I) analogs. This opens the prospect of using paramagnetic cymantrenes as prototypes in the design of Re(I) half-sandwiched derivatives for theranostics, where therapy is combined with diagnostics by magnetic resonance imaging due to the contrast properties of nitroxide radicals.


Assuntos
Imidazóis , Óxidos de Nitrogênio , Óxidos de Nitrogênio/química , Imidazóis/química
5.
J Cell Sci ; 130(20): 3455-3466, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28871044

RESUMO

Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.


Assuntos
Lisofosfolipídeos/metabolismo , Melanoma/metabolismo , Fosfatidato Fosfatase/fisiologia , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Humanos , Melanoma/patologia , Invasividade Neoplásica , Neoplasias Cutâneas/patologia
6.
Anal Chem ; 91(20): 12670-12679, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509387

RESUMO

Atherosclerosis is a complex, multifactorial disease characterized by the buildup of plaque in the arterial wall. Apolipoprotein E gene deficient (Apoe-/-) mice serve as a commonly used tool to elucidate the pathophysiology of atherosclerosis because of their propensity to spontaneously develop arterial lesions. To date, however, an integrated omics assessment of atherosclerotic lesions in individual Apoe-/- mice has been challenging because of the small amount of diseased and nondiseased tissue available. To address this current limitation, we developed a multiomics method (Multi-ABLE) based on the proteomic method called accelerated Barocycler lysis and extraction (ABLE) to assess the depth of information that can be obtained from arterial tissue derived from a single mouse by splitting ABLE to allow for a combined proteomics-metabolomics-lipidomics analysis (Multi-ABLE). The new method includes tissue lysis via pressure cycling technology (PCT) in a Barocycler, followed by proteomic analysis of half the sample by nanoLC-MS and sequential extraction of lipids (organic extract) and metabolites (aqueous extract) combined with HILIC and reversed phase chromatography and time-of-flight mass spectrometry on the other half. Proteomic analysis identified 845 proteins, 93 of which were significantly altered in lesion-containing arteries. Lipidomic and metabolomic analyses detected 851 lipid and 362 metabolite features, which included 215 and 65 identified lipids and metabolites, respectively. The Multi-ABLE method is the first to apply a concurrent multiomics pipeline to cardiovascular disease using small (<5 mg) tissue samples, and it is applicable to other diseases where limited size samples are available at specific points during disease progression.


Assuntos
Artérias/metabolismo , Lipídeos/análise , Metaboloma , Metabolômica/métodos , Proteômica/métodos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Artérias/química , Aterosclerose/metabolismo , Aterosclerose/patologia , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Componente Principal , Espectrometria de Massas em Tandem
7.
Metabolomics ; 15(1): 3, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30830411

RESUMO

INTRODUCTION: Although Sauvignon Blanc (SB) grapes are cultivated widely throughout New Zealand, wines from the Marlborough region are most famous for their typical varietal combination of tropical and vegetal aromas. These wines differ in composition from season to season as well as among locations within the region, which makes the continual production of good quality wines challenging. Here, we developed a unique database of New Zealand SB grape juices and wines to develop tools to help winemakers to make blending decisions and assist in the development of new wine styles. METHODS: About 400 juices were collected from different regions in New Zealand over three harvest seasons (2011-2013), which were then fermented under controlled conditions using a commercial yeast strain Saccharomyces cerevisiae EC1118. Comprehensive metabolite profiling of these juices and wines by gas chromatography-mass spectrometry (GC-MS) was combined with their detailed oenological parameters and associated meteorological data. RESULTS: These combined metabolomics data clearly demonstrate that seasonal variation is more prominent than regional difference in both SB grape juices and wines, despite almost universal use of vineyard irrigation to mitigate seasonal rainfall and evapotranspiration differences, Additionally, we identified a group of juice metabolites that play central roles behind these variations, which may represent chemical signatures for juice and wine quality assessment. CONCLUSION: This database is the first of its kind in the world to be available for the wider scientific community and offers potential as a predictive tool for wine quality and innovation when combined with mathematical modelling.


Assuntos
Metabolômica/métodos , Vitis/química , Vinho/análise , Bases de Dados Factuais , Fermentação , Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Nova Zelândia , Saccharomyces cerevisiae/metabolismo , Estações do Ano
8.
Inorg Chem ; 57(15): 8709-8713, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29995390

RESUMO

Q-band electron paramagnetic resonance (EPR) data conclusively demonstrate that the iron and cobalt centers in the solid solution [Fe(bpp)2]0.97[Co(terpy)2]0.03[BF4]2 (bpp = 2,6-dipyrazol-1-ylpyridine) undergo allosteric spin-state switching during light-induced excited-spin-state trapping (LIESST) at 20 K and thermal relaxation around 80 K. EPR of [Cu(terpy)2]2+ and [Cu(bpp)2]2+, doped into the same host lattice, also indicates expansion of the copper coordination sphere during LIESST excitation.

9.
Inorg Chem ; 56(19): 11729-11737, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28933835

RESUMO

Similar to spin-crossover (SCO) compounds, spin states of copper(II)-nitroxide based molecular magnets can be switched by various external stimuli including temperature and light. Although photoswitching and reverse relaxation of nitroxide-copper(II)-nitroxide triads were investigated in some detail, similar study for copper(II)-nitroxide spin pairs was still missing. In this work we address photoswitching and relaxation phenomena in exchange-coupled spin pairs of this family of molecular magnets. Using electron paramagnetic resonance (EPR) spectroscopy with photoexcitation, we demonstrate that compared to triad-containing compounds the photoinduced weakly coupled spin (WS) states of copper(II)-nitroxide pairs are remarkably more stable at cryogenic temperatures and relax to the ground strongly coupled spin (SS) states on the scale of days. The structural changes between SS and WS states, e.g., differences in Cu-Onitroxide distances, are much more pronounced for spin pairs than for spin triads in most of the studied copper(II)-nitroxide based molecular magnets. This results in higher energy barrier between WS and SS states of spin pairs and governs higher stability of their photoinduced WS states. Therefore, the longer-lived photoinduced states in copper(II)-nitroxide molecular magnets should be searched within the compounds experiencing largest structural changes upon thermal spin transition. This advancement in understanding of LIESST-like phenomena in copper(II)-nitroxide molecular magnets allows us to propose them as interesting playgrounds for benchmarking the basic factors governing the stability of photoinduced states in other SCO and SCO-like photoswitchable systems.

10.
J Exp Biol ; 219(Pt 4): 516-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26685173

RESUMO

Bleaching (dinoflagellate symbiont loss) is one of the greatest threats facing coral reefs. The functional cnidarian-dinoflagellate symbiosis, which forms coral reefs, is based on the bi-directional exchange of nutrients. During thermal stress this exchange breaks down; however, major gaps remain in our understanding of the roles of free metabolite pools in symbiosis and homeostasis. In this study we applied gas chromatography-mass spectrometry (GC-MS) to explore thermally induced changes in intracellular pools of amino and non-amino organic acids in each partner of the model sea anemone Aiptasia sp. and its dinoflagellate symbiont. Elevated temperatures (32 °C for 6 days) resulted in symbiont photoinhibition and bleaching. Thermal stress induced distinct changes in the metabolite profiles of both partners, associated with alterations to central metabolism, oxidative state, cell structure, biosynthesis and signalling. Principally, we detected elevated pools of polyunsaturated fatty acids (PUFAs) in the symbiont, indicative of modifications to lipogenesis/lysis, membrane structure and nitrogen assimilation. In contrast, reductions of multiple PUFAs were detected in host pools, indicative of increased metabolism, peroxidation and/or reduced translocation of these groups. Accumulations of glycolysis intermediates were also observed in both partners, associated with photoinhibition and downstream reductions in carbohydrate metabolism. Correspondingly, we detected accumulations of amino acids and intermediate groups in both partners, with roles in gluconeogenesis and acclimation responses to oxidative stress. These data further our understanding of cellular responses to thermal stress in the symbiosis and generate hypotheses relating to the secondary roles of a number of compounds in homeostasis and heat-stress resistance.


Assuntos
Dinoflagellida/metabolismo , Anêmonas-do-Mar/metabolismo , Aminoácidos/metabolismo , Animais , Ácidos Graxos Insaturados/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Temperatura Alta , Lipogênese , Oxirredução , Estresse Oxidativo , Fotossíntese , Estresse Fisiológico , Simbiose
11.
J Neurochem ; 133(1): 53-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25522164

RESUMO

Cultures of dissociated hippocampal neurons are often used to study neuronal cell biology. We report that the development of these neurons is strongly affected by chemicals leaching from commonly used disposable medical-grade syringes and syringe filters. Contamination of culture medium by bioactive substance(s) from syringes and filters occurred with multiple manufacturing lots and filter types under normal use conditions and resulted in changes to neurite growth, axon formation and the neuronal microtubule cytoskeleton. The effects on neuronal morphology were concentration dependent and significant effects were detected even after substantial dilution of the contaminated medium. Gas chromatography-mass spectrometry analyses revealed many chemicals eluting from the syringes and filters. Three of these chemicals (stearic acid, palmitic acid and 1,2-ethanediol monoacetate) were tested but showed no effects on neurite growth. Similar changes in neuronal morphology were seen with high concentrations of bisphenol A and dibutyl phthalate, two hormonally active plasticisers. Although no such compounds were detected by gas chromatography­mass spectrometry, unknown plasticisers in leachates may affect neurites. This is the first study to show that leachates from laboratory consumables can alter the growth of cultured hippocampal neurons. We highlight important considerations to ensure leachate contamination does not compromise cell biology experiments.


Assuntos
Axônios/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Plásticos/química , Seringas , Animais , Axônios/ultraestrutura , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Células Cultivadas , Dibutilftalato/química , Dibutilftalato/farmacologia , Equipamentos Descartáveis , Filtração/instrumentação , Camundongos , Neuritos/ultraestrutura , Neurogênese/efeitos dos fármacos , Fenóis/química , Fenóis/farmacologia
12.
J Bacteriol ; 196(11): 2012-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659768

RESUMO

Oxygen and oxidative stress have become relevant components in clarifying the mechanism that weakens bacterial cells in parallel to the mode of action of bactericidal antibiotics. Given the importance of oxidative stress in the overall defense mechanism of bacteria and their apparent role in the antimicrobial mode of action, it is important to understand how bacteria respond to this stress at a metabolic level. The aim of this study was to determine the impact of oxygen on the metabolism of the facultative anaerobe Enterococcus faecalis using continuous culture, metabolomics, and (13)C enrichment of metabolic intermediates. When E. faecalis was rapidly transitioned from anaerobic to aerobic growth, cellular metabolism was directed toward intracellular glutathione production and glycolysis was upregulated 2-fold, which increased the supply of critical metabolite precursors (e.g., glycine and glutamate) for sulfur metabolism and glutathione biosynthesis as well as reducing power for cellular respiration in the presence of hemin. The ultimate metabolic response of E. faecalis to an aerobic environment was the upregulation of fatty acid metabolism and benzoate degradation, which was linked to important changes in the bacterial membrane composition as evidenced by changes in membrane fatty acid composition and the reduction of membrane-associated demethylmenaquinone. These key metabolic pathways associated with the response of E. faecalis to oxygen may represent potential new targets to increase the susceptibility of this bacterium to bactericidal drugs.


Assuntos
Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Oxigênio/farmacologia , Aerobiose , Anaerobiose , Enterococcus faecalis/genética , Ácidos Graxos/biossíntese , Metabolômica , Transcriptoma , Regulação para Cima , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
13.
Eur Heart J Imaging Methods Pract ; 2(1): qyae004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38370393

RESUMO

Aims: Unstable atherosclerotic plaques have increased activity of myeloperoxidase (MPO). We examined whether molecular magnetic resonance imaging (MRI) of intraplaque MPO activity predicts future atherothrombosis in rabbits and correlates with ruptured human atheroma. Methods and results: Plaque MPO activity was assessed in vivo in rabbits (n = 12) using the MPO-gadolinium (Gd) probe at 8 and 12 weeks after induction of atherosclerosis and before pharmacological triggering of atherothrombosis. Excised plaques were used to confirm MPO activity by liquid chromatography-tandem mass spectrometry (LC-MSMS) and to determine MPO distribution by histology. MPO activity was higher in plaques that caused post-trigger atherothrombosis than plaques that did not. Among the in vivo MRI metrics, the plaques' R1 relaxation rate after administration of MPO-Gd was the best predictor of atherothrombosis. MPO activity measured in human carotid endarterectomy specimens (n = 30) by MPO-Gd-enhanced MRI was correlated with in vivo patient MRI and histological plaque phenotyping, as well as LC-MSMS. MPO-Gd retention measured as the change in R1 relaxation from baseline was significantly greater in histologic and MRI-graded American Heart Association (AHA) type VI than type III-V plaques. This association was confirmed by comparing AHA grade to MPO activity determined by LC-MSMS. Conclusion: We show that elevated intraplaque MPO activity detected by molecular MRI employing MPO-Gd predicts future atherothrombosis in a rabbit model and detects ruptured human atheroma, strengthening the translational potential of this approach to prospectively detect high-risk atherosclerosis.

14.
Free Radic Biol Med ; 195: 23-35, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565892

RESUMO

Conversion of the redox probe hydroethidine (HE) to 2-chloroethidium (2-Cl-E+) by myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) provides comparable specificity and superior sensitivity to measurement of 3-chlorotyrosine (3-Cl-Tyr), the gold standard biomarker for MPO chlorinating activity in biological systems. However, a limitation of the former method is the complex mixture of products formed by the reaction of HE with reagent HOCl, coupled with the difficult purification of 2-Cl-E+ from this mixture for analytical purposes. This limitation prompted us to test whether 2-Cl-E+ could be formed by reaction of HE with the strong and widely used chlorinating agent, N-chlorosuccinimide (NCS). Unexpectedly, such reaction yielded 2-chlorohydroethidine (2-Cl-HE) as the major product in addition to 2-Cl-E+, as assessed by high performance liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR). 2-Cl-HE was also observed to be the major chlorination product formed from HE with both reagent and enzymatically generated HOCl, just as it was formed ex vivo in different healthy and diseased mouse and human tissues upon incubation with glucose/glucose oxidase to generate a flux of hydrogen peroxide (H2O2). Quantification of 2-Cl-HE plus 2-Cl-E+ improved the sensitivity of the HE-based method compared with measurement of only 2-Cl-E+. Moreover, 2-chlorodimidium (2-Cl-D+) was developed as a practical internal standard instead of the previously used internal standard, deuterated 2-Cl-E+ (d5-2-Cl-E+). Overall, the present study describes an improved method for the detection of MPO/chlorinating activity in biological systems of health and disease.


Assuntos
Peróxido de Hidrogênio , Peroxidase , Animais , Humanos , Camundongos , Peróxido de Hidrogênio/química , Peroxidase/metabolismo , Oxirredução , Ácido Hipocloroso/química
15.
iScience ; 26(6): 106881, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37260745

RESUMO

Mass spectrometry (MS)-based untargeted metabolomic and lipidomic approaches are being used increasingly in biomedical research. The adoption and integration of these data are critical to the overall multi-omic toolkit. Recently, a sample extraction method called Multi-ABLE has been developed, which enables concurrent generation of proteomic and untargeted metabolomic and lipidomic data from a small amount of tissue. The proteomics field has a well-established set of software for processing of acquired data; however, there is a lack of a unified, off-the-shelf, ready-to-use bioinformatics pipeline that can take advantage of and prepare concurrently generated metabolomic and lipidomic data for joint downstream analyses. Here we present an R pipeline called MultiABLER as a unified and simple upstream processing and analysis pipeline for both metabolomics and lipidomics datasets acquired using liquid chromatography-tandem mass spectrometry. The code is available via an open-source license at https://github.com/holab-hku/MultiABLER.

16.
Dalton Trans ; 52(27): 9337-9345, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350573

RESUMO

Copper(II)-nitroxide based Cu(hfac)2LR compounds exhibit unusual magnetic behavior that can be induced by various stimuli. In many aspects, the magnetic phenomena observed in Cu(hfac)2LR are similar to classical spin-crossover behavior. However, these phenomena originate from polynuclear exchange-coupled spin clusters Cu2+-O˙-N< or >N-˙O-Cu2+-O˙-N<. Such peculiarities may result in additional multifunctionality of Cu(hfac)2LR compounds, making them promising materials for spintronic applications. Herein, we investigate the Cu(hfac)2LMeMe material, which demonstrates a three-step temperature-induced magnetostructural transition between high-temperature, low-temperature, and intermediate states, as revealed by magnetometry. Two main steps were resolved using variable-temperature Fourier-transform infrared and Q-band electron paramagnetic resonance (EPR) spectroscopies. The intermediate-temperature states (∼40-90 K) are characterized by the coexistence of two types of copper(II)-nitroxide clusters, corresponding to the low-temperature and high-temperature phases. High-field EPR experiments revealed the effect of partial alignment of Cu(hfac)2LMeMe microcrystals in a strong (>20 T) magnetic field. This effect was used to unveil the structural features of the low-temperature phase of Cu(hfac)2LMeMe, which were inaccessible using single-crystal X-ray diffraction (XRD) technique. In particular, high-field EPR allowed us to determine the relative direction of the Jahn-Teller axes in CuO6 and CuO4N2 units.

17.
JACC Adv ; 2(3): 100310, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38939599

RESUMO

Background: The detection of unstable atherosclerosis remains elusive. Intraplaque myeloperoxidase (MPO) activity causes plaque destabilization in preclinical models, holding promise for clinical translation as a novel imaging biomarker. Objectives: The purpose of this study was to assess whether MPO activity is greater in unstable human plaques, how this relates to cardiovascular events and current/emerging non-invasive imaging techniques. Methods: Thirty-one carotid endarterectomy specimens and 12 coronary trees were collected. MPO activity was determined in 88 individual samples through the conversion of hydroethidine to the MPO-specific adduct 2-chloroethidium and compared with macroscopic validation, histology, clinical outcomes, and computed tomography-derived high and low attenuation plaques and perivascular adipose tissue. Non-parametric statistical analysis utilizing Mann-Whitney U and Kruskal-Wallis tests for univariate and group comparisons were performed. Results: Unstable compared with stable plaque had higher MPO activity (carotid endarterectomy: n = 26, 4.2 ± 3.1 vs 0.2 ± 0.3 nmol/mgp; P < 0.0001; coronary: n = 17, 0.6 ± 0.5 vs 0.001 ± 0.003 nmol/mgp; P = 0.0006). Asymptomatic, stroke-free patients had lower MPO activity compared to those with symptoms or ipsilateral stroke (n = 12, 3.7 ± 2.1 vs 0.1 ± 0.2 nmol/mgp; P = 0.002). Computed tomography-determined plaque attenuation did not differentiate MPO activity (n = 30, 0.1 ± 0.1 vs 0.2 ± 0.3 nmol/mgp; P = 0.23) and MPO activity was not found in perivascular adipose tissue. Conclusions: MPO is active within unstable human plaques and correlates with symptomatic carotid disease and stroke, yet current imaging parameters do not identify plaques with active MPO. As intraplaque MPO activity can be imaged non-invasively through novel molecular imaging probes, ongoing investigations into its utility as a diagnostic tool for high-risk atherosclerosis is warranted.

18.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873248

RESUMO

Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.

19.
Redox Biol ; 58: 102532, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375379

RESUMO

Currently there are no established therapies to treat high-risk patients with unstable atherosclerotic lesions that are prone to rupture and can result in thrombosis, abrupt arterial occlusion, and a precipitous infarction. Rather than being stenotic, rupture-prone non-occlusive plaques are commonly enriched with inflammatory cells and have a thin fibrous cap. We reported previously that inhibition of the pro-inflammatory enzyme myeloperoxidase (MPO) with the suicide inhibitor AZM198 prevents formation of unstable plaque in the Tandem Stenosis (TS) mouse model of plaque instability. However, in our previous study AZM198 was administered to animals before unstable plaque was present and hence it did not test the significant unmet clinical need present in high-risk patients with vulnerable atherosclerosis. In the present study we therefore asked whether pharmacological inhibition of MPO with AZM198 can stabilize pre-existing unstable lesions in an interventional setting using the mouse model of plaque instability. In vivo molecular magnetic resonance imaging of arterial MPO activity using bis-5-hydroxytryptamide-DTPA-Gd and histological analyses revealed that arterial MPO activity was elevated one week after TS surgery, prior to the presence of unstable lesions observed two weeks after TS surgery. Animals with pre-existing unstable plaque were treated with AZM198 for one or five weeks. Both short- and long-term intervention effectively inhibited arterial MPO activity and increased fibrous cap thickness, indicative of a more stable plaque phenotype. Plaque stabilization was observed without AZM198 affecting the arterial content of Ly6B.2+- and CD68+-cells and MPO protein. These findings demonstrate that inhibition of arterial MPO activity converts unstable into stable atherosclerotic lesions in a preclinical model of plaque instability and highlight the potential therapeutic potency of MPO inhibition for the management of high-risk patients and the development of novel protective strategies against cardiovascular diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Peroxidase , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Modelos Animais de Doenças , Peroxidase/antagonistas & inibidores , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia
20.
Redox Biol ; 47: 102152, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610553

RESUMO

BACKGROUND & AIMS: Plasma concentrations of bilirubin, a product of heme catabolism formed by biliverdin reductase A (BVRA), inversely associate with the risk of metabolic diseases including hepatic steatosis and diabetes mellitus in humans. Bilirubin has antioxidant and anti-inflammatory activities and may also regulate insulin signaling and peroxisome proliferator-activated receptor alpha (PPARα) activity. However, a causal link between bilirubin and metabolic diseases remains to be established. Here, we used the global Bvra gene knockout (Bvra-/-) mouse as a model of deficiency in bilirubin to assess its role in metabolic diseases. APPROACH & RESULTS: We fed mice fat-rich diets to induce hepatic steatosis and insulin resistance. Bile pigments were measured by LC-MS/MS, and hepatic lipids by LC-MS/MS (non-targeted lipidomics), HPLC-UV and Oil-Red-O staining. Oxidative stress was evaluated measuring F2-isoprostanes by GC-MS. Glucose metabolism and insulin sensitivity were verified by glucose and insulin tolerance tests, ex vivo and in vivo glucose uptake, and Western blotting for insulin signaling. Compared with wild type littermates, Bvra-/- mice contained negligible bilirubin in plasma and liver, and they had comparable glucose metabolism and insulin sensitivity. However, Bvra-/- mice exhibited an inflamed and fatty liver phenotype, accompanied by hepatic accumulation of oxidized triacylglycerols and F2-isoprostanes, in association with depletion of α-tocopherol. α-Tocopherol supplementation reversed the hepatic phenotype and observed biochemical changes in Bvra-/- mice. CONCLUSIONS: Our data suggests that BVRA deficiency renders mice susceptible to oxidative stress-induced hepatic steatosis in the absence of insulin resistance.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Bilirrubina , Cromatografia Líquida , F2-Isoprostanos , Insulina , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA