Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
3.
Mol Nutr Food Res ; 68(13): e2300526, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342596

RESUMO

SCOPE: Plant (poly) phenolic compounds have been reported to decrease the risk of developing dementia and have been associated with maintenance of cognitive performance in normal ageing. Ferulic acid (FA) is a phenolic acid, present in a wide variety of foods including cereals, fruits, vegetables, and coffee. The aim of this systematic review is to examine the effect of FA on cognitive function in humans and animals. METHODS AND RESULTS: The search terms "Ferulic acid AND cognit*" and "Ferulic acid OR feruloyl OR ferula AND (memory OR attention OR learning OR recognition)" are used in Web of Science, Scopus, PubMED, OVID (Medline/PsycInfo), and CINAHL through October 2023. No human studies are identified that matched the inclusion criteria. Twenty-six animal studies are identified. A small number (n = 5) of these studies examined FA in healthy animals whilst the remainder examined animal models of dementia. Alzheimer's disease (n = 11) is the most prevalent model. CONCLUSION: Overall, results from studies employing disease models suggest that FA ameliorates induced cognitive decline in a time and dose-dependent manner. Similarly, studies in healthy animals show a beneficial effect of FA. However, further studies are required to determine the effects of FA on human cognitive function.


Assuntos
Cognição , Ácidos Cumáricos , Animais , Humanos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Ácidos Cumáricos/farmacologia , Modelos Animais de Doenças
4.
Food Funct ; 15(6): 2814-2835, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38414364

RESUMO

Dietary (poly)phenols have received great interest due to their potential role in the prevention and management of non-communicable diseases. In recent years, a high inter-individual variability in the biological response to (poly)phenols has been demonstrated, which could be related to the high variability in (poly)phenol gut microbial metabolism existing within individuals. An interplay between (poly)phenols and the gut microbiota exists, with (poly)phenols being metabolised by the gut microbiota and their metabolites modulating gut microbiota diversity and composition. A number of (poly)phenol metabolising phenotypes or metabotypes have been proposed, however, potential metabotypes for most (poly)phenols have not been investigated, and the relationship between metabotypes and human health remains ambiguous. This review presents updated knowledge on the reciprocal interaction between (poly)phenols and the gut microbiome, associated gut metabotypes, and subsequent impact on human health.


Assuntos
Microbioma Gastrointestinal , Fenol , Humanos , Fenóis/metabolismo , Dieta , Microbioma Gastrointestinal/fisiologia
5.
Curr Res Microb Sci ; 6: 100214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38116184

RESUMO

Spontaneous fermentation of Tritordeum flour enhances the nutritional potential of this hybrid cereal. However, the effect of consumption of Tritordeum sourdough bread (SDB) on gut health remains to be elucidated. This study investigated the effect of in vitro digestion and faecal fermentation of SDB compared to that of traditional baker's yeast (BYB) Tritordeum bread. After 24-h anaerobic faecal fermentation, both SDB and BYB (1% w/v) induced an increase in the relative abundances of Bifidobacterium, Megasphaera, Mitsuokella, and Phascolarctobacterium genera compared to baseline, while concentrations of acetate and butyrate were significantly higher at 24 h for SDB compared to those for BYB. Integrity of intestinal epithelium, as assessed through in vitro trans-epithelial electrical resistance (TEER) assay, was slightly increased after incubation with SDB fermentation supernatants, but not after incubation with BYB fermentation supernatants. The SDB stimulated in vitro mucosal immune response by inducing early secretion of inflammatory cytokines, IL-6 and TNF-α, followed by downregulation of the inflammatory trigger through induction of anti-inflammatory IL-10 expression. Overall, our findings suggest that Tritordeum sourdough can modulate gut microbiota fermentation activity and positively impact the gut health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA