Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
2.
Arch Virol ; 165(7): 1715-1717, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417973

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an important pathogen of medical and veterinary importance in the Americas. In this report, we present the complete genome sequences of five VEEV isolates obtained from pools of Culex (Melanoconion) gnomatos (4) or Culex (Melanoconion) pedroi (1) from Iquitos, Peru. Genetic and phylogenetic analyses showed that all five isolates grouped within the VEEV complex sister to VEEV IIIC and are members of subtype IIID. This is the first report of full-length genomic sequences of VEEV IIID.


Assuntos
Culex/virologia , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Encefalomielite Equina Venezuelana/virologia , Genoma Viral , Mosquitos Vetores/virologia , Animais , Sequência de Bases , Vírus da Encefalite Equina Venezuelana/classificação , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/transmissão , Genômica , Cavalos , Peru , Filogenia
3.
J Am Mosq Control Assoc ; 32(1): 51-4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27105216

RESUMO

Emerging and re-emerging arboviruses continue to be a threat to global public health, and viral surveillance of mosquito populations is critical for mosquito control operations. Due to the tropical climate of many of the affected areas, it may be difficult to maintain a cold chain as the samples travel from collection sites to laboratories for testing. We determined how suboptimal holding temperatures affected the ability to detect viruses in pools of mosquitoes. Adult female Aedes albopictus and Ae. taeniorhynchus individuals were inoculated with chikungunya virus or Venezuelan equine encephalitis virus suspensions, respectively, and placed at 26°C for 8 days. One infected mosquito was then added to a vial of 24 negative mosquitoes and held at -80°C, -20°C, 4°C, 22°C, or 35°C for up to 14 days. Mosquito pools were analyzed for both infectious virus by plaque assay and for viral ribonucleic acid (RNA) with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). At higher temperatures, the amount of infectious virus decreased rapidly, but viruses in samples held at 4°C or lower remained relatively stable. In contrast, viral RNA was detectable from pools held at all temperatures and holding times by RT-qPCR. Cycle threshold (Ct) values increased as temperatures and holding times increased. These findings suggest that if viral RNA detection is the goal of surveillance efforts, then mosquito pools do not require storage at ≤4°C. This enhances the feasibility of field-based arbovirus surveillance programs in which maintaining a cold chain may not be a possibility.


Assuntos
Aedes/virologia , Vírus Chikungunya/isolamento & purificação , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Animais , Feminino , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Manejo de Espécimes
4.
J Med Entomol ; 52(4): 699-704, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26335477

RESUMO

The outbreak of disease caused by chikungunya virus (CHIKV) in 2006 and the recent spread of this virus to the Americas in 2013 indicate the potential for this virus to spread and cause significant disease. However, there are currently no accurate and reliable field-usable, diagnostic methods to provide critical, real-time information for early detection of CHIKV within the vector populations in order to implement appropriate vector control and personal protective measures. In this article, we report the ability of an immuno-chromatographic assay developed by VecTOR Test Systems Inc. to detect CHIKV in a pool of female Aedes mosquitoes containing a single CHIKV-infected mosquito. The CHIKV dipstick assay was simple to use, did not require a cold chain, and provided clear results within 1 h. It was highly specific and did not cross-react with samples spiked with a variety of other alpha, bunya, and flaviviruses. The CHIKV assay can provide real-time critical information on the presence of CHIKV in mosquitoes to public health personnel. Results from this assay will allow a rapid threat assessment and the focusing of vector control measures in high-risk areas.


Assuntos
Aedes/virologia , Antígenos Virais/análise , Vírus Chikungunya/isolamento & purificação , Cromatografia de Afinidade/métodos , Virologia/métodos , Animais , Feminino , Kit de Reagentes para Diagnóstico/virologia , Sensibilidade e Especificidade
5.
J Med Entomol ; 52(5): 1111-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26336233

RESUMO

Rift Valley fever virus (RVFV) continues to pose a threat to much of the world. Unlike many arboviruses, numerous mosquito species have been associated with RVFV in nature, and many species have been demonstrated as competent vectors in the laboratory. In this study, we evaluated two field-collected Psorophora species, Psorophora columbiae (Dyar and Knab) and Psorophora ciliata (F.) for their potential to transmit RVFV in North America. Both species were susceptible to infection after feeding on a hamster with a viremia of 10(7) plaque-forming units/ml, with infection rates of 65 and 83% for Ps. columbiae and Ps. ciliata, respectively (with nearly all specimens becoming infected when feeding on a hamster with a higher viremia). However, both species had a significant salivary gland barrier, as only 2/35 Ps. columbiae and 0/3 Ps. ciliata with a disseminated infection transmitted virus by bite. Despite the presence of the salivary gland barrier, due to the very high population that can occur and its propensity to feed on large mammals, Ps. columbiae might play a role in amplifying RVFV should that virus be introduced into an area where this species is common.


Assuntos
Culicidae/virologia , Insetos Vetores/virologia , Febre do Vale de Rift/transmissão , Animais , California , Feminino , Florida , Mesocricetus/virologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/fisiologia , Viremia/virologia
6.
J Med Entomol ; 51(6): 1127-35, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26309298

RESUMO

This study was conducted to determine the relative abundance, diversity, seasonal, and vertical distributions of potential mosquito vectors in the Amazon Basin, Peru. A total of 66,097 mosquitoes (50 mosquito species from 12 genera) were collected from May 2001 through March 2002 at a forested site near Iquitos, Peru. Mosquitoes were collected using Aotus nancymae Hershkovitz monkey-baited CDC light traps set for 12-h day and night periods at varying heights (e.g., ground and canopy) in the forest. Of the 12 genera, three accounted for 75% of all mosquitoes collected: Culex (33%), Aedes (23%), and Psorophora (18%). The most prevalent species collected were Aedes serratus (Theobald), Culex pedroi Sirivanakarn & Belkin, Psorophora albigenu (Peryassu), and a combination of Mansonia indubitans Dyar & Shannon and Mansonia titillans (Walker), which accounted for 56% of all mosquitoes captured. In general, mosquitoes were collected more often at night and on the ground. Exceptions include Coquillettidia venezuelensis (Theobald), which were collected in relatively even numbers at both day and night and most Mansonia and some species of Anopheles, which were collected more often in the canopy. Total mosquito populations had two peaks, June-July (Ma. indubitans/titillans and Cq. venezuelensis) and December-January (Ps. albigenu, Cx. pedroi, and Ae. serratus). Observations of the eight most collected mosquitoes indicated that behavioral shifts were not observed between collection months. These data provide a better understanding of the species diversity, population density, and seasonal distribution of potential mosquito vectors within the Amazon Basin region and allow for the development of appropriate vector and disease prevention strategies.


Assuntos
Biodiversidade , Culicidae , Animais , Aotidae , Feminino , Masculino , Peru , Estações do Ano
7.
J Med Entomol ; 51(1): 220-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24605472

RESUMO

There is a threat for dengue virus (DENV) reemergence in many regions of the world, particularly in areas where the DENV vectors, Aedes aegypti (L.) and Aedes albopictus (Skuse), are readily available. However, there are currently no accurate and reliable diagnostic methods to provide critical, real-time information for early detection of DENV within the vector populations to implement appropriate vector control and personal protective measures. In this article, we report the ability of an immuno-chromatographic assay developed by VecTOR Test Systems Inc. to detect DENV in a pool of female Aedes mosquitoes infected with any of the four viral serotypes. The DENV dipstick assay was simple to use, did not require a cold chain, and provided clear results within 30 min. It was highly specific and did not cross-react with samples spiked with West Nile, yellow fever, Japanese encephalitis, Rift Valley fever, chikungunya, Venezuelan equine encephalomyelitis, Ross River, LaCrosse, or Caraparu viruses. The DENV assay can provide real-time critical information on the presence of DENV in mosquitoes to public health personnel. Results from this assay will allow a rapid threat assessment and the focusing of vector control measures in high-risk areas.


Assuntos
Aedes/virologia , Vírus da Dengue/isolamento & purificação , Insetos Vetores/virologia , Animais , Cromatografia , Feminino , Técnicas Imunológicas , Sensibilidade e Especificidade
8.
J Am Mosq Control Assoc ; 30(4): 253-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25843130

RESUMO

Rift Valley fever virus (RVFV), a mosquito-borne virus, has been responsible for large outbreaks in Africa that have resulted in hundreds of thousands of human infections and major economic disruption due to loss of livestock and to trade restrictions. Culex pipiens was implicated as the principal vector of the Egyptian outbreak in 1977 that affected about 200,000 people. In the northern USA, Cx. pipiens occurs both as a mix of forms pipiens and molestus (i.e., US Culex pipiens) as well as pure Cx. pipiens form molestus, the latter mostly in underground locations such as sewers and basements. In order to understand the potential risk of spread of RVFV in the USA, we compared their relative abilities to transmit RVFV in the laboratory. After feeding on hamsters with high viremias, >10(9) plaque-forming units (PFU)/ml, both US Cx. pipiens and Cx. pipiens form molestus were highly susceptible to infection (∼80%) and about 20% of each form developed a disseminated infection. In contrast, when fed on a hamster with a moderate viremia, 10(7.5) PFU/ml, US Cx. pipiens were significantly (P < 0.001) more susceptible (84%) than were the pure form molestus (47%). Similarly, dissemination rates were significantly (P  =  0.0261) higher in US Cx. pipiens (34%) than they were in pure Cx. pipiens form molestus (10%). These results underscore differences in vector competence between genetic forms in the Cx. pipiens complex but also indicate that if RVFV were to arrive in the USA, competent vectors abound in the highly urbanized Northeast.


Assuntos
Culex/fisiologia , Mosquitos Vetores/fisiologia , Febre do Vale de Rift/transmissão , Animais , Cricetinae , Culex/genética , Mesocricetus , Mosquitos Vetores/genética , Risco , Estados Unidos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38717063

RESUMO

Background: Madariaga virus (MADV), a member of the eastern equine encephalitis virus (EEEV) complex, circulates in Latin America and exhibits distinct evolutionary and ecological features compared to the North American EEEV. While published data have shed light on MADV ecology, several key aspects remain unknown. Methods: In this study, we compiled data on virus isolation, vector competence, and animal serology collected over six decades in Latin America to identify critical knowledge gaps on MADV transmission and ecology. Results: Specific vertebrate animals serving as amplifying hosts and the mosquito species acting as enzootic and epizootic vectors have not yet been identified. Other aspects that remain unclear are the virus current geographic distribution, the role of equines as hosts in epizootic cycles, and the full impact of MADV on human health in endemic regions. Conclusions: The numerous knowledge gaps surrounding MADV, its widespread distribution in Latin America, and its potential to cause severe disease in animals and humans emphasize the urgent need for increased research efforts, heightened awareness, and intensified surveillance towards this potential emerging threat.

10.
J Med Entomol ; 50(5): 1111-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24180117

RESUMO

We evaluated Aedes atlanticus Dyar and Knab, Aedes infirmatus Dyar and Knab, Aedes vexans (Meigen), Anopheles crucians Wiedemann, Coquillettidia perturbans (Walker), Culex nigripalpus Theobald, Mansonia dyari Belkin, Heinemann, and Page, and Psorophora ferox (Von Humboldt) from Florida to determine which of these species should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America. Female mosquitoes that had fed on adult hamsters inoculated with RVFV were incubated for 7-21 d at 26 degrees C, then allowed to refeed on susceptible hamsters, and tested to determine infection, dissemination, and transmission rates. We also inoculated mosquitoes intrathoracically, held them for 7 d, and then allowed them to feed on a susceptible hamster to check for a salivary gland barrier. When exposed to hamsters with viremias > or = 10(7.6) plaque-forming units per milliliter of blood, at least some individuals in each of the species tested became infected; however, Cx. nigripalpus, An. crucians, and Ae. infirmatus were essentially incompetent vectors in the laboratory because of either a midgut escape or salivary gland barrier. Each of the other species should be considered as potential vectors and would need to be controlled if RVFV were introduced into an area where they were found. Additional studies need to be conducted with other geographic populations of these species and to determine how environmental factors affect transmission.


Assuntos
Culicidae/virologia , Insetos Vetores/virologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/isolamento & purificação , Animais , Cricetinae , Feminino , Florida , Humanos , Febre do Vale de Rift/virologia , Especificidade da Espécie , Ensaio de Placa Viral , Viremia/transmissão , Viremia/virologia
11.
J Am Mosq Control Assoc ; 28(4 Suppl): 123-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23401952

RESUMO

Members of the Culex pipiens complex have been implicated as vectors of a number of arboviruses including St. Louis encephalitis, West Nile, Sindbis, and Rift Valley fever viruses. For some viruses, such as West Nile virus, laboratory studies have indicated that various members of this complex have a similar ability to become infected with and transmit virus, thus providing evidence for the similarity among the various members of this complex. On the other hand, although strains of Cx. pipiens from various parts of the world have all been relatively efficient vectors of Rift Valley fever virus, Cx. quinquefasciatus from Africa, Australia, and North America have been nearly refractory to this virus, thus indicating that the various members of this complex do not necessarily respond similarly to a particular arbovirus. Based on the similar response to some viruses and differing response to others, Cx. pipiens and Cx. quinquefasciatus appear to be closely related, but distinct species.


Assuntos
Infecções por Arbovirus/transmissão , Culex/virologia , Insetos Vetores/virologia , Animais , Arbovírus/isolamento & purificação , Culex/classificação , Humanos , Insetos Vetores/classificação , Especificidade da Espécie
12.
PLoS Negl Trop Dis ; 16(10): e0010835, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36201566

RESUMO

The transmission cycle of West Nile virus (WNV) involves multiple species of birds. The relative importance of various bird species to the overall transmission is often inferred from the level and duration of viremia that they experience upon infection. Reports utilizing in vitro feeding techniques suggest that the source and condition of blood in which arboviruses are fed to mosquitoes can significantly alter the infectiousness of arbovirus to mosquitoes. We confirmed this using live hosts. A series of mosquito feedings with Culex pipiens was conducted on WNV-infected American robins and common grackles over a range of viremias. Mosquitoes were assayed individually by plaque assay for WNV at 3 to 7 days after feeding. At equivalent viremia, robins always infected more mosquitoes than did grackles. We conclude that the infectiousness of viremic birds cannot always be deduced from viremia alone. If information concerning the infectiousness of a particular bird species is important, such information is best acquired by feeding mosquitoes directly on experimentally infected individuals of that species.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Viremia/veterinária , Aves
13.
Emerg Microbes Infect ; 11(1): 1272-1280, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35387573

RESUMO

The absence of urban yellow fever epidemics in East Africa remains a mystery amidst the proliferation of Aedes aegypti in this region. To understand the transmission dynamics of the disease, we tested urban (Mombasa, Kisumu, and Nairobi) Aedes mosquito populations in Kenya for their susceptibility to an East African yellow fever virus (YFV) genotype. Overall, 22% (n = 805) of the Ae. aegypti that were orally challenged with an infectious dose of YFV had a midgut infection, with comparable rates for Mombasa and Kisumu (χ2 = 0.35, df = 1, P = 0.55), but significantly lower rates for Nairobi (χ2 ≥ 11.08, df = 1, P ≤ 0.0009). Variations in YFV susceptibility (midgut infection) among Ae. aegypti subspecies were not associated with discernable cytochrome c oxidase subunit 1 gene haplotypes. Remarkably, no YFV dissemination or transmission was observed among the orally challenged Ae. aegypti populations. Moreover, Ae. aegypti mosquitoes that were intrathoracically inoculated with YFV failed to transmit the virus via capillary feeding. In contrast, dissemination (oral exposure) and transmission (intrathoracic inoculation) of YFV was observed among a few peri-domestic Ae. bromeliae mosquitoes (n = 129) that were assessed from these urban areas. Our study highlights an inefficient urban Ae. aegypti population, and the potential for Ae. bromeliae in sustaining an urban YFV transmission in Kenya. An assessment of urban Ae. aegypti susceptibility to other YFV genotypes, and vector potential of urban Ae. bromeliae populations in Kenya is recommended to guide cost-effective vaccination.


Assuntos
Aedes , Vírus não Classificados , Febre Amarela , Animais , Vírus de DNA , Quênia/epidemiologia , Mosquitos Vetores , Medição de Risco , Febre Amarela/epidemiologia , Vírus da Febre Amarela/genética
14.
J Med Entomol ; 48(6): 1197-201, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22238879

RESUMO

West Nile virus (WNV) is currently active in Kenya as evidenced by the detection of antibodies in birds bled as part of an avian influenza surveillance program in 2009. Although WNV has been isolated from several mosquito species in Kenya, no studies have ever been conducted to determine which of these species are competent vectors of this virus. Therefore, we allowed Kenyan mosquitoes to feed on 2- or 3-d-old chickens that had been infected with a Lineage one strain of WNV 24-48 h earlier. These mosquitoes were tested approximately 2 wk later to determine infection, dissemination, and transmission rates. All five species [Culex quinquefasciatus Say, Culex univittatus Theobald, Culex vansomereni Edwards, Mansonia africana (Theobald), and Mansonia uniformis (Theobald)] were susceptible to infection, but disseminated infections were detected only in the three Culex, and not the two Mansonia species. Culex mosquitoes with a disseminated infection readily transmitted virus by bite, but even when inoculated with WNV, the two Mansonia failed to transmit virus, indicating a salivary gland barrier. These studies indicate that the three Culex species may play a role in the transmission of WNV in Kenya.


Assuntos
Culex/virologia , Insetos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia , Animais , Galinhas , Viremia
15.
J Am Mosq Control Assoc ; 27(4): 370-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22329268

RESUMO

Rift Valley fever virus (RVFV) causes outbreaks of severe disease in domestic ungulates as well as humans in Africa. There is a concern that outbreaks of Rift Valley fever may continue and that this virus may spread into regions where it had not previously been detected. Surveillance and rapid detection are critical to the initiation of an effective disease control program. Here we report on the field evaluation in Kenya of the VectorTest RVFV antigen assay, modeled on the VecTest assay for West Nile virus. The dipsticks provided results in <20 min, were easy to use, and did not require a laboratory with containment facilities. Although none of the field-collected mosquitoes were infected with RVFV, the dipstick provided a clear positive result with pools of field-collected mosquitoes spiked with a single positive, irradiated (to inactivate any infectious virus) mosquito. Similarly, the dipstick was able to detect virus from pools of mosquitoes captured during the RVFV outbreak in 2007. The RVFV dipstick assay was highly specific with only a single weak false positive out of 266 pools tested (specificity > 99.6%). The RVFV assay can provide a rapid, safe, easy-to-use preliminary test to alert public health personnel to the presence of RVFV in mosquitoes in a given area. Results from this assay will allow for more rapid medical threat assessments and the focusing of vector control measures on high-risk areas.


Assuntos
Antígenos Virais/isolamento & purificação , Culicidae/virologia , Vírus da Febre do Vale do Rift/imunologia , Animais , Quênia/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/virologia , Sensibilidade e Especificidade , Virologia/métodos
16.
J Med Entomol ; 58(3): 1389-1397, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257996

RESUMO

Microfilariae (MF) are the immature stages of filarial nematode parasites and inhabit the blood and dermis of all classes of vertebrates, except fish. Concurrent ingestion of MF and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Shortly after being ingested, MF penetrate the mosquito's midgut and may introduce virus into the mosquito's hemocoel, creating a disseminated viral infection much sooner than normal. This phenomenon is known as microfilarial enhancement. Both American Robins and Common Grackles harbor MF-that is, Eufilaria sp. and Chandlerella quiscali von Linstow (Spirurida: Onchocercidae), respectively. We compared infection and dissemination rates in Culex pipiens L. mosquitoes that fed on birds with and without MF infections that had been infected with West Nile virus (WNV). At moderate viremias, about 107 plaque-forming units (pfu)/ml of blood, there were no differences in infection or dissemination rates among mosquitoes that ingested viremic blood from a bird with or without microfilaremia. At high viremias, >108.5 pfu/ml, mosquitoes feeding on a microfilaremic Grackle with concurrent viremia had significantly higher infection and dissemination rates than mosquitoes fed on viremic Grackles without microfilaremia. Microfilarial enhancement depends on the specific virus, MF, and mosquito species examined. How virus is introduced into the hemocoel by MF differs between the avian/WNV systems described here (i.e., leakage) and various arboviruses with MF of the human filarid, Brugia malayi (Brug) (Spirurida: Onchocercidae) (i.e., cotransport). Additional studies are needed to determine if other avian species and their MF are involved in the microfilarial enhancement of WNV in nature.


Assuntos
Doenças das Aves/transmissão , Filariose/veterinária , Aves Canoras , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/fisiologia , Animais , Doenças das Aves/parasitologia , Doenças das Aves/virologia , Filariose/parasitologia , Microfilárias/fisiologia , Especificidade da Espécie , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia
17.
Mol Cell Probes ; 24(4): 219-28, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20412852

RESUMO

Flaviviruses are a highly diverse group of RNA viruses classified within the genus Flavivirus, family Flaviviridae. Most flaviviruses are arthropod-borne, requiring a mosquito or tick vector. Several flaviviruses are highly pathogenic to humans; however, their high genetic diversity and immunological relatedness makes them extremely challenging to diagnose. In this study, we developed and evaluated a broad-range Flavivirus assay designed to detect both tick- and mosquito-borne flaviviruses by using RT-PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) on the Ibis T5000 platform. The assay was evaluated with a panel of 13 different flaviviruses. All samples were correctly identified to the species level. To determine the limit of detection for the mosquito-borne primer sets, serial dilutions of RNA from West Nile virus (WNV) were assayed and could be detected down to an equivalent viral titer of 0.2 plaque-forming units/mL. Analysis of flaviviruses in their natural biological background included testing Aedes aegypti mosquitoes that were laboratory-infected with dengue-1 virus. The assay accurately identified the virus within infected mosquitoes, and we determined the average viral genome per mosquito to be 2.0 x 10(6). Using human blood, serum, and urine spiked with WNV and mouse blood and brain tissues from Karshi virus-infected mice, we showed that these clinical matrices did not inhibit the detection of these viruses. Finally, we used the assay to test field-collected Ixodes scapularis ticks collected from sites in New York and Connecticut. We found 16/322 (5% infection rate) ticks positive for deer tick virus, a subtype of Powassan virus. In summary, we developed a single high-throughput Flavivirus assay that could detect multiple tick- and mosquito-borne flaviviruses and thus provides a new analytical tool for their medical diagnosis and epidemiological surveillance.


Assuntos
Vetores de Doenças , Flavivirus/genética , Flavivirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Composição de Bases/genética , Sequência de Bases , Culicidae/virologia , Primers do DNA/metabolismo , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/virologia , Camundongos , Dados de Sequência Molecular , Sensibilidade e Especificidade , Alinhamento de Sequência , Carrapatos/virologia , Carga Viral/genética , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação
18.
J Med Entomol ; 47(5): 884-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20939385

RESUMO

To determine which arthropods should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America, we evaluated Culex erraticus (Dyar and Knab), Culex erythrothorax Dyar, Culex nigripalpus Theobald, Culex pipiens L., Culex quinquefasciatus Say, Culex tarsalis Coquillett, Aedes dorsalis (Wiedemann), Aedes vexans (Meigen), Anopheles quadrimaculatus Say, and Culicoides sonorensis Wirth and Jones from the western, midwestern, and southern United States for their ability to transmit RVFV. Female mosquitoes were allowed to feed on adult hamsters inoculated with RVFV, after which engorged mosquitoes were incubated for 7-21 d at 260C, then allowed to refeed on susceptible hamsters, and tested to determine infection, dissemination, and transmission rates. Other specimens were inoculated intrathoracically, held for 7 d, and then allowed to feed on a susceptible hamster to check for a salivary gland barrier. When exposed to hamsters with viremias > or =10(8.8) plaque-forming units/ml blood, Cx. tarsalis transmitted RVFV efficiently (infection rate = 93%, dissemination rate = 56%, and estimated transmission rate = 52%). In contrast, when exposed to the same virus dose, none of the other species tested transmitted RVFV efficiently. Estimated transmission rates for Cx. erythrothorax, Cx. pipiens, Cx. erraticus, and Ae. dorsalis were 10, 8, 4, and 2%, respectively, and for the remaining species were < or = 1%. With the exception of Cx. tarsalis and Cx. pipiens, all species tested had moderate to major salivary gland barriers. None of the C. sonorensis became infected and none of the An. quadrimaculatus tested transmitted RVFV by bite, even after intrathoracic inoculation, indicating that these species would not be competent vectors of RVFV. Although Ae. vexans from Florida and Louisiana were relatively efficient vectors of RVFV, specimens of this species captured in Colorado or California were virtually incompetent, illustrating the need to evaluate local population for their ability to transmit a pathogen. In addition to laboratory vector competence, factors such as seasonal density, host feeding preference, longevity, and foraging behavior should be considered when determining the potential role that these species could play in RVFV transmission.


Assuntos
Culicidae/virologia , Insetos Vetores/virologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Animais , Cricetinae , Culicidae/fisiologia , Feminino , Mesocricetus , Febre do Vale de Rift/virologia , Viremia
19.
J Am Mosq Control Assoc ; 26(4): 445-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21290943

RESUMO

Rift Valley fever (RVF), a disease of ruminants and humans, has been responsible for large outbreaks in Africa that have resulted in hundreds of thousands of human infections and major economic disruption due to loss of livestock and to trade restrictions. As indicated by the rapid spread of West Nile viral activity across North America since its discovery in 1999 and the rapid and widespread movement of chikungunya virus from Africa throughout the Indian Ocean Islands to Asia and Europe, an introduced exotic arbovirus can be rapidly and widely established across wide geographical regions. Although RVF virus (RVFV) is normally transmitted by mosquitoes, we wanted to determine the potential for this virus to replicate in 2 of the most globally distributed and common higher flies: house flies, Musca domestica, and stable flies, Stomoxys calcitrans. Neither species supported the replication of RVFV, even after intrathoracic inoculation. However, S. calcitrans was able to mechanically transmit RVFV to susceptible hamsters (Mesocricetus auratus) after probing on infected hamsters with high viral titers. Therefore, S. calcitrans, because of its close association with domestic animals that serve as amplifying hosts of RVFV, should be considered a possible mechanical vector of RVFV, and it may contribute to the rapid spread of a RVF outbreak. Other Stomoxys species present in Africa and elsewhere may also play similar roles.


Assuntos
Muscidae/virologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Animais , Cricetinae , Interações Hospedeiro-Patógeno , Insetos Vetores , Febre do Vale de Rift/virologia , Replicação Viral/fisiologia
20.
Vector Borne Zoonotic Dis ; 20(6): 454-460, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017863

RESUMO

Rift Valley fever virus (RVFV) causes severe disease in domestic ungulates (cattle, goats, and sheep) and a febrile illness in humans (with ∼1% case fatality rate). This virus has been spreading geographically, and there is concern of it spreading to Europe or the Americas. Environmental temperature can significantly affect the ability of mosquitoes to transmit an arbovirus. However, these effects are not consistent among viruses or mosquito species. Therefore, we evaluated the effect of incubation temperatures ranging from 14°C to 30°C on infection and dissemination rates for Culex tarsalis and Aedes taeniorhynchus allowed to feed on hamsters infected with RVFV. Engorged mosquitoes were randomly allocated to cages and placed in incubators maintained at 14°C, 18°C, 22°C, 26°C, or 30°C. Although infection rates detected in Cx. tarsalis increased with increasing holding temperature, holding temperature had no effect on infection rates detected in Ae. taeniorhynchus. However, for both species, the percentage of mosquitoes with a disseminated infection after specific extrinsic incubation periods (4, 7, 10, 14, 17, or 21 days) increased with increasing incubation holding temperature, even after adjusting for the apparent increase in infection rate in Cx. tarsalis. The effects of environmental factors, such as ambient temperature, need to be taken into account when developing models for viral persistence and spread in nature.


Assuntos
Aedes/fisiologia , Culex/fisiologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Aedes/virologia , Animais , Cricetinae , Culex/virologia , Feminino , Interações Hospedeiro-Patógeno , Mesocricetus , Febre do Vale de Rift/virologia , Temperatura , Viremia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA