Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(5): 1995-2006, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981004

RESUMO

Dopaminergic dysregulation is one of the leading hypotheses for the pathoetiology underlying psychotic disorders such as schizophrenia. Molecular imaging studies have shown increased striatal dopamine synthesis capacity (DSC) in schizophrenia and people in the prodrome of psychosis. However, it is unclear if genetic risk for psychosis is associated with altered DSC. To investigate this, we recruited healthy controls and two antipsychotic naive groups of individuals with copy number variants, one with a genetic deletion at chromosome 22q11.2, and the other with a duplication at the same locus, who are at increased and decreased risk for psychosis, respectively. Fifty-nine individuals (21 with 22q11.2 deletion, 12 with the reciprocal duplication and 26 healthy controls) received clinical measures and [18F]-DOPA PET imaging to index striatal Kicer. There was an inverse linear effect of copy number variant number on striatal Kicer value (B = -1.2 × 10-3, SE = 2 × 10-4, p < 0.001), with controls showing levels intermediate between the two variant groups. Striatal Kicer was significantly higher in the 22q11.2 deletion group compared to the healthy control (p < 0.001, Cohen's d = 1.44) and 22q11.2 duplication (p < 0.001, Cohen's d = 2) groups. Moreover, Kicer was positively correlated with the severity of psychosis-risk symptoms (B = 730.5, SE = 310.2, p < 0.05) and increased over time in the subject who went on to develop psychosis, but was not associated with anxiety or depressive symptoms. Our findings suggest that genetic risk for psychosis is associated with dopaminergic dysfunction and identify dopamine synthesis as a potential target for treatment or prevention of psychosis in 22q11.2 deletion carriers.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Humanos , Dopamina , Variações do Número de Cópias de DNA/genética , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/genética , Di-Hidroxifenilalanina , Síndrome de DiGeorge/diagnóstico por imagem , Síndrome de DiGeorge/genética , Tomografia por Emissão de Pósitrons/métodos
2.
PLoS Comput Biol ; 19(10): e1011571, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844124

RESUMO

The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Modelos Teóricos
3.
J Neuroinflammation ; 20(1): 34, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782185

RESUMO

BACKGROUND: One intrastriatal administration of quinolinic acid (QA) in rats induces a lesion with features resembling those observed in Huntington's disease. Our aim is to evaluate the effects of the cysteinyl leukotriene receptor antagonist montelukast (MLK), which exhibited neuroprotection in different preclinical models of neurodegeneration, on QA-induced neuroinflammation and regional metabolic functions. METHODS: The right and left striatum of Sprague Dawley and athymic nude rats were injected with QA and vehicle (VEH), respectively. Starting from the day before QA injection, animals were treated with 1 or 10 mg/kg of MLK or VEH for 14 days. At 14 and 30 days post-lesion, animals were monitored with magnetic resonance imaging (MRI) and positron emission tomography (PET) using [18F]-VC701, a translocator protein (TSPO)-specific radiotracer. Striatal neuroinflammatory response was measured post-mortem in rats treated with 1 mg/kg of MLK by immunofluorescence. Rats treated with 10 mg/kg of MLK also underwent a [18F]-FDG PET study at baseline and 4 months after lesion. [18F]-FDG PET data were then used to assess metabolic connectivity between brain regions by applying a covariance analysis method. RESULTS: MLK treatment was not able to reduce the QA-induced increase in striatal TSPO PET signal and MRI lesion volume, where we only detected a trend towards reduction in animals treated with 10 mg/kg of MLK. Post-mortem immunofluorescence analysis revealed that MLK attenuated the increase in striatal markers of astrogliosis and activated microglia in the lesioned hemisphere. We also found a significant increase in a marker of anti-inflammatory activity (MannR) and a trend towards reduction in a marker of pro-inflammatory activity (iNOS) in the lesioned striatum of MLK-compared to VEH-treated rats. [18F]-FDG uptake was significantly reduced in the striatum and ipsilesional cortical regions of VEH-treated rats at 4 months after lesion. MLK administration preserved glucose metabolism in these cortical regions, but not in the striatum. Finally, MLK was able to counteract changes in metabolic connectivity and measures of network topology induced by QA, in both lesioned and non-lesioned hemispheres. CONCLUSIONS: Overall, MLK treatment produced a significant neuroprotective effect by reducing neuroinflammation assessed by immunofluorescence and preserving regional brain metabolism and metabolic connectivity from QA-induced neurotoxicity in cortical and subcortical regions.


Assuntos
Encefalite , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Ácido Quinolínico/toxicidade , Ácido Quinolínico/metabolismo , Fluordesoxiglucose F18/metabolismo , Doenças Neuroinflamatórias , Corpo Estriado/metabolismo , Síndromes Neurotóxicas/patologia , Encefalite/patologia , Modelos Animais de Doenças
4.
J Neuroinflammation ; 20(1): 92, 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37032328

RESUMO

Neuroinflammation is an important component of many neurodegenerative diseases, whether as a primary cause or a secondary outcome. For that reason, either as diagnostic tools or to monitor progression and/or pharmacological interventions, there is a need for robust biomarkers of neuroinflammation in the brain. Mitochondrial TSPO (18 kDa Translocator protein) is one of few available biomarkers of neuroinflammation for which there are clinically available PET imaging agents. In this study, we further characterised neuroinflammation in a mouse model of prion-induced chronic neurodegeneration (ME7) including a pharmacological intervention via a CSF1R inhibitor. This was achieved by autoradiographic binding of the second-generation TSPO tracer, [3H]PBR28, along with a more comprehensive examination of the cellular contributors to the TSPO signal changes by immunohistochemistry. We observed regional increases of TSPO in the ME7 mouse brains, particularly in the hippocampus, cortex and thalamus. This increased TSPO signal was detected in the cells of microglia/macrophage lineage as well as in astrocytes, endothelial cells and neurons. Importantly, we show that the selective CSF1R inhibitor, JNJ-40346527 (JNJ527), attenuated the disease-dependent increase in TSPO signal, particularly in the dentate gyrus of the hippocampus, where JNJ527 attenuated the number of Iba1+ microglia and neurons, but not GFAP+ astrocytes or endothelial cells. These findings suggest that [3H]PBR28 quantitative autoradiography in combination with immunohistochemistry are important translational tools for detecting and quantifying neuroinflammation, and its treatments, in neurodegenerative disease. Furthermore, we demonstrate that although TSPO overexpression in the ME7 brains was driven by various cell types, the therapeutic effect of the CSF1R inhibitor was primarily to modulate TSPO expression in microglia and neurons, which identifies an important route of biological action of this particular CSF1R inhibitor and provides an example of a cell-specific effect of this type of therapeutic agent on the neuroinflammatory process.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Camundongos , Animais , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , Receptores de GABA/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Macrófagos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurônios/metabolismo , Doenças Priônicas/metabolismo , Biomarcadores/metabolismo
5.
J Neuroinflammation ; 20(1): 272, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990275

RESUMO

BACKGROUND: Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer's disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer's disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile. METHODS: We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype. RESULTS: Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores. CONCLUSIONS: TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer's disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer's disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer's disease should aim to enhance protective microglial actions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vacinas contra Influenza , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de GABA/metabolismo
6.
Psychol Med ; 53(11): 4880-4897, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35730361

RESUMO

BACKGROUND: Impaired brain metabolism may be central to schizophrenia pathophysiology, but the magnitude and consistency of metabolic dysfunction is unknown. METHODS: We searched MEDLINE, PsychINFO and EMBASE between 01/01/1980 and 13/05/2021 for studies comparing regional brain glucose metabolism using 18FDG-PET, in schizophrenia/first-episode psychosis v. controls. Effect sizes (Hedges g) were pooled using a random-effects model. Primary measures were regional absolute and relative CMRGlu in frontal, temporal, parietal and occipital lobes, basal ganglia and thalamus. RESULTS: Thirty-six studies (1335 subjects) were included. Frontal absolute glucose metabolism (Hedge's g = -0.74 ± 0.54, p = 0.01; I2 = 67%) and metabolism relative to whole brain (g = -0.44 ± 0.34, p = 0.01; I2 = 55%) were lower in schizophrenia v. controls with moderate heterogeneity. Absolute frontal metabolism was lower in chronic (g = -1.18 ± 0.73) v. first-episode patients (g = -0.09 ± 0.88) and controls. Medicated patients showed frontal hypometabolism relative to controls (-1.04 ± 0.26) while metabolism in drug-free patients did not differ significantly from controls. There were no differences in parietal, temporal or occipital lobe or thalamic metabolism in schizophrenia v. controls. Excluding outliers, absolute basal ganglia metabolism was lower in schizophrenia v. controls (-0.25 ± 0.24, p = 0.049; I2 = 5%). Studies identified reporting voxel-based morphometry measures of absolute 18FDG uptake (eight studies) were also analysed using signed differential mapping analysis, finding lower 18FDG uptake in the left anterior cingulate gyrus (Z = -4.143; p = 0.007) and the left inferior orbital frontal gyrus (Z = -4.239; p = 0.02) in schizophrenia. CONCLUSIONS: We report evidence for hypometabolism with large effect sizes in the frontal cortex in schizophrenia without consistent evidence for alterations in other brain regions. Our findings support the hypothesis of hypofrontality in schizophrenia.


Assuntos
Glucose , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Fluordesoxiglucose F18/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons
7.
Psychol Med ; 53(11): 5235-5245, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36004510

RESUMO

BACKGROUND: Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS: We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS: There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS: These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Seguimentos , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética
8.
Brain Behav Immun ; 111: 202-210, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37076054

RESUMO

Current research into mood disorders indicates that circulating immune mediators participating in the pathophysiology of chronic somatic disorders have potent influences on brain function. This paradigm has brought to the fore the use of anti-inflammatory therapies as adjunctive to standard antidepressant therapy to improve treatment efficacy, particularly in subjects that do not respond to standard medication. Such new practice requires biomarkers to tailor these new therapies to those most likely to benefit but also validated mechanisms of action describing the interaction between peripheral immunity and brain function to optimize target intervention. These mechanisms are generally studied in preclinical models that try to recapitulate the human disease, MDD, through peripherally induced sickness behaviour. In this proposal paper, after an appraisal of the data in rodent models and their adherence to the data in clinical cohorts, we put forward a modified model of periphery-brain interactions that goes beyond the currently established view of microglia cells as the drivers of depression. Instead, we suggest that, for most patients with mild levels of peripheral inflammation, brain barriers are the primary actors in the pathophysiology of the disease and in treatment resistance. We then highlight data gaps in this proposal and suggest novel lines of research.


Assuntos
Depressão , Comportamento de Doença , Humanos , Encéfalo , Transtornos do Humor , Fatores Imunológicos/uso terapêutico , Inflamação
9.
Brain Behav Immun ; 113: 289-301, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482203

RESUMO

It is becoming increasingly apparent that neuroinflammation plays a critical role in an array of neurological and psychiatric disorders. Recent studies have demonstrated the potential of diffusion MRI (dMRI) to characterize changes in microglial density and morphology associated with neuroinflammation, but these were conducted mostly ex vivo and/or in extreme, non-physiological animal models. Here, we build upon these studies by investigating the utility of well-established dMRI methods to detect neuroinflammation in vivo in a more clinically relevant animal model of sickness behavior. We show that diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) indicate widespread increases in diffusivity in the brains of rats given a systemic lipopolysaccharide challenge (n = 20) vs. vehicle-treated controls (n = 12). These diffusivity changes correlated with histologically measured changes in microglial morphology, confirming the sensitivity of dMRI to neuroinflammatory processes. This study marks a further step towards establishing a noninvasive indicator of neuroinflammation, which would greatly facilitate early diagnosis and treatment monitoring in various neurological and psychiatric diseases.


Assuntos
Imagem de Tensor de Difusão , Lipopolissacarídeos , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
10.
Neuroimage ; 259: 119433, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781077

RESUMO

Dynamic functional connectivity (dFC) in resting-state fMRI holds promise to deliver candidate biomarkers for clinical applications. However, the reliability and interpretability of dFC metrics remain contested. Despite a myriad of methodologies and resulting measures, few studies have combined metrics derived from different conceptualizations of brain functioning within the same analysis - perhaps missing an opportunity for improved interpretability. Using a complexity-science approach, we assessed the reliability and interrelationships of a battery of phase-based dFC metrics including tools originating from dynamical systems, stochastic processes, and information dynamics approaches. Our analysis revealed novel relationships between these metrics, which allowed us to build a predictive model for integrated information using metrics from dynamical systems and information theory. Furthermore, global metastability - a metric reflecting simultaneous tendencies for coupling and decoupling - was found to be the most representative and stable metric in brain parcellations that included cerebellar regions. Additionally, spatiotemporal patterns of phase-locking were found to change in a slow, non-random, continuous manner over time. Taken together, our findings show that the majority of characteristics of resting-state fMRI dynamics reflect an interrelated dynamical and informational complexity profile, which is unique to each acquisition. This finding challenges the interpretation of results from cross-sectional designs for brain neuromarker discovery, suggesting that individual life-trajectories may be more informative than sample means.


Assuntos
Encéfalo , Fractais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
11.
Neuropathol Appl Neurobiol ; 48(4): e12789, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34935179

RESUMO

The brain is protected by the endothelial blood-brain barrier (BBB) that limits the access of micro-organisms, tumour cells, immune cells and autoantibodies to the parenchyma. However, the classic model of disease spread across a disrupted BBB does not explain the focal distribution of lesions seen in a variety of neurological diseases and why lesions are frequently adjacent to the cerebrospinal fluid (CSF) spaces. We have critically reviewed the possible role of a blood-CSF-brain route as a disease entry pathway into the brain parenchyma. The initial step of this pathway is the transfer of pathogens or immune components from the blood into the CSF at the choroid plexuses, where the blood-CSF barrier (BCSFB) is located. The flow of CSF results in disease dissemination throughout the CSF spaces. Access to the brain parenchyma from the CSF can then occur across the ependymal layer at the ventricular surface or across the pial-glial barrier of the subarachnoid space and the Virchow-Robin spaces. We have reviewed the anatomy and physiology of the blood-CSF-brain pathway and the brain barriers controlling this process. We then summarised the evidence supporting this brain entry route in a cross-section of neurological diseases including neuromyelitis optica, multiple sclerosis, neurosarcoidosis, neuropsychiatric lupus, cryptococcal infection and both solid and haematological tumours. This summary highlights the conditions that share the blood-CSF-brain pathway as a pathogenetic mechanism. These include the characteristic proximity of lesions to CSF, evidence of disruption of the brain barriers and the identification of significant pathology within the CSF. An improved understanding of pathological transfer through the CSF and across all brain barriers will inform on more effective and targeted treatments of primary and secondary diseases of the central nervous system.


Assuntos
Barreira Hematoencefálica , Encéfalo , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Sistema Nervoso Central , Plexo Corióideo
12.
Brain Behav Immun ; 102: 89-97, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35181440

RESUMO

While COVID-19 research has seen an explosion in the literature, the impact of pandemic-related societal and lifestyle disruptions on brain health among the uninfected remains underexplored. However, a global increase in the prevalence of fatigue, brain fog, depression and other "sickness behavior"-like symptoms implicates a possible dysregulation in neuroimmune mechanisms even among those never infected by the virus. We compared fifty-seven 'Pre-Pandemic' and fifteen 'Pandemic' datasets from individuals originally enrolled as control subjects for various completed, or ongoing, research studies available in our records, with a confirmed negative test for SARS-CoV-2 antibodies. We used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography / magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation. Healthy individuals examined after the enforcement of 2020 lockdown/stay-at-home measures demonstrated elevated brain levels of two independent neuroinflammatory markers (the 18 kDa translocator protein, TSPO, and myoinositol) compared to pre-lockdown subjects. The serum levels of two inflammatory markers (interleukin-16 and monocyte chemoattractant protein-1) were also elevated, although these effects did not reach statistical significance after correcting for multiple comparisons. Subjects endorsing higher symptom burden showed higher TSPO signal in the hippocampus (mood alteration, mental fatigue), intraparietal sulcus and precuneus (physical fatigue), compared to those reporting little/no symptoms. Post-lockdown TSPO signal changes were spatially aligned with the constitutive expression of several genes involved in immune/neuroimmune functions. This work implicates neuroimmune activation as a possible mechanism underlying the non-virally-mediated symptoms experienced by many during the COVID-19 pandemic. Future studies will be needed to corroborate and further interpret these preliminary findings.


Assuntos
COVID-19 , Pandemias , Biomarcadores/metabolismo , Encéfalo/metabolismo , Controle de Doenças Transmissíveis , Humanos , Doenças Neuroinflamatórias , Receptores de GABA/metabolismo , SARS-CoV-2
13.
Mol Psychiatry ; 26(4): 1332-1345, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690805

RESUMO

A leading hypothesis for schizophrenia and related psychotic disorders proposes that cortical brain disruption leads to subcortical dopaminergic dysfunction, which underlies psychosis in the majority of patients who respond to treatment. Although supported by preclinical findings that prefrontal cortical lesions lead to striatal dopamine dysregulation, the relationship between prefrontal structural volume and striatal dopamine function has not been tested in people with psychosis. We therefore investigated the in vivo relationship between striatal dopamine synthesis capacity and prefrontal grey matter volume in treatment-responsive patients with psychosis, and compared them to treatment non-responsive patients, where dopaminergic mechanisms are not thought to be central. Forty patients with psychosis across two independent cohorts underwent 18F-DOPA PET scans to measure dopamine synthesis capacity (indexed as the influx rate constant Kicer) and structural 3T MRI. The PET, but not MR, data have been reported previously. Structural images were processed using DARTEL-VBM. GLM analyses were performed in SPM12 to test the relationship between prefrontal grey matter volume and striatal Kicer. Treatment responders showed a negative correlation between prefrontal grey matter and striatal dopamine synthesis capacity, but this was not evident in treatment non-responders. Specifically, we found an interaction between treatment response, whole striatal dopamine synthesis capacity and grey matter volume in left (pFWE corr. = 0.017) and right (pFWE corr. = 0.042) prefrontal cortex. We replicated the finding in right prefrontal cortex in the independent sample (pFWE corr. = 0.031). The summary effect size was 0.82. Our findings are consistent with the long-standing hypothesis of dysregulation of the striatal dopaminergic system being related to prefrontal cortex pathology in schizophrenia, but critically also extend the hypothesis to indicate it can be applied to treatment-responsive schizophrenia only. This suggests that different mechanisms underlie the pathophysiology of treatment-responsive and treatment-resistant schizophrenia.


Assuntos
Dopamina , Transtornos Psicóticos , Di-Hidroxifenilalanina/análogos & derivados , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Transtornos Psicóticos/diagnóstico por imagem
14.
Mol Psychiatry ; 26(6): 2616-2625, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296127

RESUMO

A loss of GABA signaling is a prevailing hypothesis for the pathogenesis of schizophrenia. Preclinical studies indicate that blockade of the α5 subtype of the GABA receptor (α5-GABAARs) leads to behavioral phenotypes associated with schizophrenia, and postmortem evidence indicates lower hippocampal α5-GABAARs protein and mRNA levels in schizophrenia. However, it is unclear if α5-GABAARs are altered in vivo or related to symptoms. We investigated α5-GABAARs availability in antipsychotic-free schizophrenia patients and antipsychotic-medicated schizophrenia patients using [11C]Ro15-4513 PET imaging in a cross-sectional, case-control study design. Thirty-one schizophrenia patients (n = 10 antipsychotic free) and twenty-nine matched healthy controls underwent a [11C]Ro15-4513 PET scan and MRI. The α5 subtype GABA-A receptor availability was indexed using [11C]Ro15-4513 PET imaging. Dynamic PET data were analyzed using the two-tissue compartment model with an arterial plasma input function and total volume of distribution (VT) as the outcome measure. Symptom severity was assessed using the PANSS scale. There was significantly lower [11C]Ro15-4513 VT in the hippocampus of antipsychotic-free patients, but not in medicated patients (p = 0.64), relative to healthy controls (p < 0.05; effect size = 1.4). There was also a significant positive correlation between [11C]Ro15-4513 VT and total PANSS score in antipsychotic-free patients (r = 0.72; p = 0.044). The results suggest that antipsychotic-free patients with schizophrenia have lower α5-GABAARs levels in the hippocampus, consistent with the hypothesis that GABA hypofunction underlies the pathophysiology of the disorder.


Assuntos
Receptores de GABA-A , Esquizofrenia , Estudos de Casos e Controles , Estudos Transversais , Humanos , Tomografia por Emissão de Pósitrons , Receptores de GABA-A/genética , Esquizofrenia/diagnóstico por imagem
15.
Mol Psychiatry ; 26(7): 2721-2739, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33664474

RESUMO

Dysfunctional mitochondria characterise Parkinson's Disease (PD). Uncovering etiological molecules, which harm the homeostasis of mitochondria in response to pathological cues, is therefore pivotal to inform early diagnosis and therapy in the condition, especially in its idiopathic forms. This study proposes the 18 kDa Translocator Protein (TSPO) to be one of those. Both in vitro and in vivo data show that neurotoxins, which phenotypically mimic PD, increase TSPO to enhance cellular redox-stress, susceptibility to dopamine-induced cell death, and repression of ubiquitin-dependent mitophagy. TSPO amplifies the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signalling, forming positive feedback, which represses the transcription factor EB (TFEB) and the controlled production of lysosomes. Finally, genetic variances in the transcriptome confirm that TSPO is required to alter the autophagy-lysosomal pathway during neurotoxicity.


Assuntos
Mitofagia , Síndromes Neurotóxicas , Receptores de GABA , Autofagia , Humanos , Lisossomos/metabolismo , Mitocôndrias , Síndromes Neurotóxicas/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
16.
Neurol Sci ; 43(1): 379-385, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33974169

RESUMO

BACKGROUND: Cell nuclear architecture has been explored in cancer and laminopathies but not in neurodegenerative disorders. Huntington's disease (HD) is a neurodegenerative disorder that leads to neuronal death. Chromosome-wide changes in gene expression have been reported in HD, not only in the brain but also in peripheral blood cells, but whether this translates into nuclear and chromosome architecture alterations has not yet been studied. METHODS: We investigate nuclear structure and chromosome organization in HD blood cells using fluorescence in situ hybridization in ultrathin cryosections (cryoFISH), coupled with machine learning image analysis to evaluate size, distribution, and morphology of nuclei and chromosomes. Four chromosomes were analyzed based on up- or downregulation of gene expression in HD. RESULTS: We show that blood cells from HD patients display increased nuclear size and filamentary shape, increased size of gene-rich chromosome 19, decreased filamentary shape of gene-rich chromosome 22, and a more radially centralized position for chromosome 19, whereas chromosomes 4 and 5 do not show detectable differences. CONCLUSIONS: We identify gross changes in nuclear architecture and chromosome organization associated with HD in blood. This adds a new layer of information onto disrupting mechanisms in HD and increases the potential of using blood to survey HD.


Assuntos
Doença de Huntington , Células Sanguíneas , Encéfalo , Expressão Gênica , Humanos , Doença de Huntington/genética , Hibridização in Situ Fluorescente
17.
Eur J Nucl Med Mol Imaging ; 49(1): 257-268, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33779770

RESUMO

PURPOSE: This technical note seeks to act as a practical guide for implementing a supervised clustering algorithm (SVCA) reference region approach and to explain the main strengths and limitations of the technique in the context of 18-kilodalton translocator protein (TSPO) positron emission tomography (PET) studies in experimental medicine. BACKGROUND: TSPO PET is the most widely used imaging technique for studying neuroinflammation in vivo in humans. Quantifying neuroinflammation with PET can be a challenging and invasive procedure, especially in frail patients, because it often requires blood sampling from an arterial catheter. A widely used alternative to arterial sampling is SVCA, which identifies the voxels with minimal specific binding in the PET images, thus extracting a pseudo-reference region for non-invasive quantification. Unlike other reference region approaches, SVCA does not require specification of an anatomical reference region a priori, which alleviates the limitation of TSPO contamination in anatomically-defined reference regions in individuals with underlying inflammatory processes. Furthermore, SVCA can be applied to any TSPO PET tracer across different neurological and neuropsychiatric conditions, providing noninvasivequantification of TSPO expression. METHODS: We provide an overview of the development of SVCA as well as step-by-step instructions for implementing SVCA with suggestions for specific settings. We review the literature on SVCAapplications using first- and second- generation TSPO PET tracers and discuss potential clinically relevant limitations and applications. CONCLUSIONS: The correct implementation of SVCA can provide robust and reproducible estimates of brain TSPO expression. This review encourages the standardisation of SVCA methodology in TSPO PET analysis, ultimately aiming to improve replicability and comparability across study sites.


Assuntos
Pirimidinas , Receptores de GABA , Análise por Conglomerados , Humanos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
18.
Eur J Nucl Med Mol Imaging ; 49(1): 246-256, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33693967

RESUMO

PURPOSE: Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS: This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS: Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.


Assuntos
Compostos Radiofarmacêuticos , Receptores de GABA , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Tomografia Computadorizada por Raios X
19.
Brain Behav Immun ; 91: 487-497, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160089

RESUMO

The relationship between peripheral and central immunity and how these ultimately may cause depressed behaviour has been the focus of a number of imaging studies conducted with Positron Emission Tomography (PET). These studies aimed at testing the immune-mediated model of depression that proposes a direct effect of peripheral cytokines and immune cells on the brain to elicit a neuroinflammatory response via a leaky blood-brain barrier and ultimately depressive behaviour. However, studies conducted so far using PET radioligands targeting the neuroinflammatory marker 18 kDa translocator protein (TSPO) in patient cohorts with depression have demonstrated mild inflammatory brain status but no correlation between central and peripheral immunity. To gain a better insight into the relationship between heightened peripheral immunity and neuroinflammation, we estimated blood-to-brain and blood-to-CSF perfusion rates for two TSPO radiotracers collected in two separate studies, one large cross-sectional study of neuroinflammation in normal and depressed cohorts (N = 51 patients and N = 25 controls) and a second study where peripheral inflammation in N = 7 healthy controls was induced via subcutaneous injection of interferon (IFN)-α. In both studies we observed a consistent negative association between peripheral inflammation, measured with c-reactive protein P (CRP), and radiotracer perfusion into and from the brain parenchyma and CSF. Importantly, there was no association of this effect with the marker of BBB leakage S100ß, that was unchanged. These results suggest a different model of peripheral-to-central immunity interaction whereas peripheral inflammation may cause a reduction in BBB permeability. This effect, on the long term, is likely to disrupt brain homeostasis and induce depressive behavioural symptoms.


Assuntos
Barreira Hematoencefálica , Proteína C-Reativa , Inflamação , Receptores de GABA , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos Transversais , Depressão , Voluntários Saudáveis , Humanos , Inflamação/diagnóstico por imagem , Permeabilidade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores de GABA/metabolismo
20.
Brain Behav Immun ; 96: 154-167, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052363

RESUMO

The increased expression of 18 kDa Translocator protein (TSPO) is one of the few available biomarkers of neuroinflammation that can be assessed in humans in vivo by positron emission tomography (PET). TSPO PET imaging of the central nervous system (CNS) has been widely undertaken, but to date no clear consensus has been reached about its utility in brain disorders. One reason for this could be because the interpretation of TSPO PET signal remains challenging, given the cellular heterogeneity and ubiquity of TSPO in the brain. The aim of the current study was to ascertain if TSPO PET imaging can be used to detect neuroinflammation induced by a peripheral treatment with a low dose of the endotoxin, lipopolysaccharide (LPS), in a rat model (ip LPS), and investigate the origin of TSPO signal changes in terms of their cellular sources and regional distribution. An initial pilot study utilising both [18F]DPA-714 and [11C]PK11195 TSPO radiotracers demonstrated [18F]DPA-714 to exhibit a significantly higher lesion-related signal in the intracerebral LPS rat model (ic LPS) than [11C]PK11195. Subsequently, [18F]DPA-714 was selected for use in the ip LPS study. Twenty-four hours after ip LPS, there was an increased uptake of [18F]DPA-714 across the whole brain. Further analyses of regions of interest, using immunohistochemistry and RNAscope Multiplex fluorescence V2 in situ hybridization technology, showed TSPO expression in microglia, monocyte derived-macrophages, astrocytes, neurons and endothelial cells. The expression of TSPO was significantly increased after ip LPS in a region-dependent manner: with increased microglia, monocyte-derived macrophages and astrocytes in the substantia nigra, in contrast to the hippocampus where TSPO was mostly confined to microglia and astrocytes. In summary, our data demonstrate the robust detection of peripherally-induced neuroinflammation in the CNS utilising the TSPO PET radiotracer, [18F]DPA-714, and importantly, confirm that the resultant increase in TSPO signal increase arises mostly from a combination of microglia, astrocytes and monocyte-derived macrophages.


Assuntos
Células Endoteliais , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte , Células Endoteliais/metabolismo , Microglia/metabolismo , Projetos Piloto , Ratos , Receptores de GABA/metabolismo , Receptores de GABA-A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA