Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 40(9): 75, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28861775

RESUMO

Bent-core liquid crystals present the first evidence of forming polar superstructures from achiral molecules. The nematic phase is the newest member of the bent-core family and turns out to be extremely interesting owing to its distinct features compared to its calamitic counterpart. Here the investigation of one achiral unsymmetrical 2-methyl-3-amino-benzoic acid (2,6-substituted toluene)-derived four-ring bent-core nematic (BCN) liquid crystals (11-2M-F) is presented after nanodispersion. Ferroelectric nanoparticles significantly affect the phase transition temperature, threshold voltage, dielectric permittivity, elastic constants and splay viscosity of the pristine BCN. In most bent-core nematic liquid crystals the bent elastic constant (K33) is usually lower than the splay elastic constant (K11) owing to the presence of short-range smectic-C-like correlations in the nematic phase. Thus the elastic anisotropy ([Formula: see text]) is usually negative in bent-core nematics unlike in rod-like nematic liquid crystals where K33 is always greater than K11. Here we report a short-core bent-shaped nematic liquid crystal whose negative elastic anisotropy was turned to positive by minute addition of ferroelectric nanoparticles.

2.
ACS Appl Mater Interfaces ; 14(37): 42628-42634, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36082439

RESUMO

In this study, we used a new series of highly polar three-ring-based bent-core liquid crystals (BCLCs) to stabilize a wide temperature range of blue phase III (BPIII), including room temperature. A significant finding is the implementation of electro-optical (E-O) switching at room temperature in the current BPIII system. The observed Kerr constant (K) has an extraordinarily high value (K ≈ 9.2 × 10-9m V-2) that exceeds all previously reported values in the category of BPIII materials. The extremely high value of K realizes the lowest operating voltage (Von ≈ 3.3 Vrms/µm) for BPIII. The measured values of K and Von in BPIII set a new limit for the experimentalist. The millisecond (ms) order response times are explained based on rotational viscosity. The present binary system of BPIII materials is an excellent choice for device application.

3.
ACS Appl Mater Interfaces ; 8(5): 3143-9, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26783766

RESUMO

Liquid crystal (LC) materials are currently the dominant electronic materials in display technology because of the ease of control of molecular orientation using an electric field. However, this technology requires the fabrication of two polarizers to create operational displays, reducing light transmission efficiency below 10%. It is therefore desirable to develop new technologies to enhance the light efficiency while maintaining or improving other properties such as the modulation speed of the molecular orientation. Here we report a uniaxial-oriented B7 smectic liquid crystalline film, using fluorescent bent-core LC molecules, a chemically modified substrate, and an in-plane electric field. A LC droplet under homeotropic boundary conditions of air/LC as well as LC/substrate exhibits large focal conic like optical textures. The in-plane electric field induced uniaxial orientation of the LC molecules, in which molecular polar directors are aligned in the direction of the electric field. This highly oriented LC film exhibits linearly polarized luminescence and microsecond time-scale modulation characteristics. The resultant device is both cheap and easy to fabricate and thus has great potential for electro-optic applications, including LC displays, bioimaging systems, and optical communications.


Assuntos
Computadores , Eletrônica/instrumentação , Fluorescência , Cristais Líquidos/química , Iluminação/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA