RESUMO
Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.
Assuntos
Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Intestinos/microbiologia , Células Th17/imunologia , Células Th17/fisiologia , Adolescente , Adulto , Animais , Dieta Hiperlipídica/métodos , Dieta Cetogênica/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Microbiota/fisiologia , Pessoa de Meia-Idade , Células Th17/microbiologia , Adulto JovemRESUMO
A20 is an anti-inflammatory protein that is strongly linked to human disease. Here, we find that mice expressing three distinct targeted mutations of A20's zinc finger 7 (ZF7) ubiquitin-binding motif uniformly developed digit arthritis with features common to psoriatic arthritis, while mice expressing point mutations in A20's OTU or ZF4 motifs did not exhibit this phenotype. Arthritis in A20ZF7 mice required T cells and MyD88, was exquisitely sensitive to tumor necrosis factor and interleukin-17A, and persisted in germ-free conditions. A20ZF7 cells exhibited prolonged IκB kinase activity that drove exaggerated transcription of late-phase nuclear factor-κB response genes in vitro and in prediseased mouse paws in vivo. In addition, mice expressing double-mutant A20 proteins in A20's ZF4 and ZF7 motifs died perinatally with multi-organ inflammation. Therefore, A20's ZF4 and ZF7 motifs synergistically prevent inflammatory disease in a non-catalytic manner.
Assuntos
Artrite Psoriásica/metabolismo , Inflamação/metabolismo , Ubiquitina/metabolismo , Animais , Células Cultivadas , Interleucina-17 , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , NF-kappa B/metabolismo , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação/fisiologia , Dedos de Zinco/fisiologiaRESUMO
Diet is a major factor that shapes the gut microbiome1, but the consequences of diet-induced changes in the microbiome for host pathophysiology remain poorly understood. We conducted a randomized human intervention study using a very-low-calorie diet (NCT01105143). Although metabolic health was improved, severe calorie restriction led to a decrease in bacterial abundance and restructuring of the gut microbiome. Transplantation of post-diet microbiota to mice decreased their body weight and adiposity relative to mice that received pre-diet microbiota. Weight loss was associated with impaired nutrient absorption and enrichment in Clostridioides difficile, which was consistent with a decrease in bile acids and was sufficient to replicate metabolic phenotypes in mice in a toxin-dependent manner. These results emphasize the importance of diet-microbiome interactions in modulating host energy balance and the need to understand the role of diet in the interplay between pathogenic and beneficial symbionts.
Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Restrição Calórica , Dieta Redutora , Microbioma Gastrointestinal/fisiologia , Adiposidade , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Toxinas Bacterianas/metabolismo , Ácidos e Sais Biliares/metabolismo , Peso Corporal , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/metabolismo , Metabolismo Energético , Humanos , Absorção Intestinal , Masculino , Camundongos , Nutrientes/metabolismo , Simbiose , Redução de PesoRESUMO
Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene sequencing revealed significant shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which is sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA + bacteria depleted 5-FU in gut microbiota grown ex vivo and the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA + E. coli, or preTA-high CRC patient stool. Finally, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach is generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.
RESUMO
Prion propagation involves a templating reaction in which the infectious form of the prion protein (PrP(Sc)) binds to the cellular form (PrP(C)), generating additional molecules of PrP(Sc). While several regions of the PrP(C) molecule have been suggested to play a role in PrP(Sc) formation based on in vitro studies, the contribution of these regions in vivo is unclear. Here, we report that mice expressing PrP deleted for a short, polybasic region at the N terminus (residues 23-31) display a dramatically reduced susceptibility to prion infection and accumulate greatly reduced levels of PrP(Sc). These results, in combination with biochemical data, demonstrate that residues 23-31 represent a critical site on PrP(C) that binds to PrP(Sc) and is essential for efficient prion propagation. It may be possible to specifically target this region for treatment of prion diseases as well as other neurodegenerative disorders due to ß-sheet-rich oligomers that bind to PrP(C).
Assuntos
Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Fatores Etários , Animais , Encéfalo/patologia , Linhagem Celular Transformada , Cricetinae , Modelos Animais de Doenças , Endocitose/genética , Regulação da Expressão Gênica/genética , Humanos , Imunização/métodos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/patologia , Fragmentos de Peptídeos/genética , Proteínas PrPC/genética , Doenças Priônicas/genética , Doenças Priônicas/imunologia , Doenças Priônicas/patologia , Ligação Proteica/genética , Estrutura Secundária de Proteína/genética , Scrapie/metabolismo , Scrapie/patologia , Deleção de Sequência/genética , Fatores de Tempo , TransfecçãoRESUMO
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (ß-hydroxybutyrate, ßHB) rescued EAE whereas transgenic mice unable to produce ßHB in the intestine developed more severe disease. Transplantation of the ßHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 (Th17) cell activation in vitro . Finally, we isolated a L. murinus strain that protected from EAE, which was phenocopied by the Lactobacillus metabolite indole lactic acid. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
RESUMO
Transgenic mice expressing prion protein (PrP) molecules with several different internal deletions display spontaneous neurodegenerative phenotypes that can be dose-dependently suppressed by coexpression of wild-type PrP. Each of these deletions, including the largest one (Δ32-134), retains 9 aa immediately following the signal peptide cleavage site (residues 23-31; KKRPKPGGW). These residues have been implicated in several biological functions of PrP, including endocytic trafficking and binding of glycosaminoglycans. We report here on our experiments to test the role of this domain in the toxicity of deleted forms of PrP. We find that transgenic mice expressing Δ23-134 PrP display no clinical symptoms or neuropathology, in contrast to mice expressing Δ32-134 PrP, suggesting that residues 23-31 are essential for the toxic phenotype. Using a newly developed cell culture assay, we narrow the essential region to amino acids 23-26, and we show that mutant PrP toxicity is not related to the role of the N-terminal residues in endocytosis or binding to endogenous glycosaminoglycans. However, we find that mutant PrP toxicity is potently inhibited by application of exogenous glycosaminoglycans, suggesting that the latter molecules block an essential interaction between the N terminus of PrP and a membrane-associated target site. Our results demonstrate that a short segment containing positively charged amino acids at the N terminus of PrP plays an essential role in mediating PrP-related neurotoxicity. This finding identifies a protein domain that may serve as a drug target for amelioration of prion neurotoxicity.
Assuntos
Mutação/genética , Oligopeptídeos/genética , Oligopeptídeos/toxicidade , Proteínas PrPC/genética , Proteínas PrPC/toxicidade , Sequência de Aminoácidos , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Dados de Sequência Molecular , Oligopeptídeos/química , Proteínas PrPC/química , Estrutura Terciária de Proteína/genética , Ovinos , Tartarugas , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/toxicidade , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/toxicidadeRESUMO
The cellular prion protein (PrPC) undergoes constitutive proteolytic cleavage between residues 111/112 to yield a soluble N-terminal fragment (N1) and a membrane-anchored C-terminal fragment (C1). The C1 fragment represents the major proteolytic fragment of PrPC in brain and several cell types. To explore the role of C1 in prion disease, we generated Tg(C1) transgenic mice expressing this fragment (PrP(Δ23-111)) in the presence and absence of endogenous PrP. In contrast to several other N-terminally deleted forms of PrP, the C1 fragment does not cause a spontaneous neurological disease in the absence of endogenous PrP. Tg(C1) mice inoculated with scrapie prions remain healthy and do not accumulate protease-resistant PrP, demonstrating that C1 is not a substrate for conversion to PrPSc (the disease-associated isoform). Interestingly, Tg(C1) mice co-expressing C1 along with wild-type PrP (either endogenous or encoded by a second transgene) become ill after scrapie inoculation, but with a dramatically delayed time course compared with mice lacking C1. In addition, accumulation of PrPSc was markedly slowed in these animals. Similar effects were produced by a shorter C-terminal fragment of PrP(Δ23-134). These results demonstrate that C1 acts as dominant-negative inhibitor of PrPSc formation and accumulation of neurotoxic forms of PrP. Thus, C1, a naturally occurring fragment of PrPC, might play a modulatory role during the course of prion diseases. In addition, enhancing production of C1, or exogenously administering this fragment, represents a potential therapeutic strategy for the treatment of prion diseases.
Assuntos
Proteínas PrPSc/química , Proteínas PrPSc/genética , Animais , Encéfalo/metabolismo , Genes Dominantes , Genótipo , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Doenças Neurodegenerativas/genética , Estrutura Terciária de Proteína , Scrapie/genética , Fatores de TempoRESUMO
Anti-TNF antibodies are effective for treating patients with inflammatory bowel disease (IBD), but many patients fail to respond to anti-TNF therapy, highlighting the importance of TNF-independent disease. We previously demonstrated that acute deletion of 2 IBD susceptibility genes, A20 (Tnfaip3) and Abin-1 (Tnip1), in intestinal epithelial cells (IECs) sensitized mice to both TNF-dependent and TNF-independent death. Here we show that TNF-independent IEC death after A20 and Abin-1 deletion was rescued by germ-free derivation or deletion of MyD88, while deletion of Trif provided only partial protection. Combined deletion of Ripk3 and Casp8, which inhibits both apoptotic and necroptotic death, completely protected against death after acute deletion of A20 and Abin-1 in IECs. A20- and Abin-1-deficient IECs were sensitized to TNF-independent, TNFR1-mediated death in response to lymphotoxin α (LTα) homotrimers. Blockade of LTα in vivo reduced weight loss and improved survival when combined with partial deletion of MyD88. Biopsies of inflamed colon mucosa from patients with IBD exhibited increased LTA and IL1B expression, including a subset of patients with active colitis on anti-TNF therapy. These data show that microbial signals, MyD88, and LTα all contribute to TNF-independent intestinal injury.
Assuntos
Doenças Inflamatórias Intestinais , Linfotoxina-alfa , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Linfotoxina-alfa/farmacologia , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Inibidores do Fator de Necrose TumoralRESUMO
Multiple research groups have shown that diet impacts the gut microbiome; however, variability in experimental design and quantitative assessment have made it challenging to assess the degree to which similar diets have reproducible effects across studies. Through an unbiased subject-level meta-analysis framework, we re-analyzed 27 dietary studies including 1,101 samples from rodents and humans. We demonstrate that a high-fat diet (HFD) reproducibly changes gut microbial community structure. Finer taxonomic analysis revealed that the most reproducible signals of a HFD are Lactococcus species, which we experimentally demonstrate to be common dietary contaminants. Additionally, a machine-learning approach defined a signature that predicts the dietary intake of mice and demonstrated that phylogenetic and gene-centric transformations of this model can be translated to humans. Together, these results demonstrate the utility of microbiome meta-analyses in identifying robust and reproducible features for mechanistic studies in preclinical models.
Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Bases de Dados Factuais , Dieta , Microbioma Gastrointestinal/genética , Humanos , Lactococcus/classificação , Lactococcus/genética , Aprendizado de Máquina , Camundongos , FilogeniaRESUMO
The presence of the cellular prion protein (PrP(C)) on the cell surface is critical for the neurotoxicity of prions. Although several biological activities have been attributed to PrP(C), a definitive demonstration of its physiological function remains elusive. In this review, we discuss some of the proposed functions of PrP(C), focusing on recently suggested roles in cell adhesion, regulation of ionic currents at the cell membrane and neuroprotection. We also discuss recent evidence supporting the idea that PrP(C) may function as a receptor for soluble oligomers of the amyloid ß peptide and possibly other toxic protein aggregates. These data suggest surprising new connections between the physiological function of PrP(C) and its role in neurodegenerative diseases beyond those caused by prions.
Assuntos
Fragmentos de Peptídeos/metabolismo , Doenças Priônicas/metabolismo , Príons/metabolismo , HumanosRESUMO
Insight into the normal function of PrP(C), and how it can be subverted to produce neurotoxic effects, is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants, Δ105-125 (called ΔCR), produces a spontaneous neurodegenerative illness when expressed in transgenic mice, and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous, or can be exerted on neighboring cells, is unknown. To investigate this question, we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice, which are marked by the presence or absence of GFP, are differentiated together to yield neurons, astrocytes, and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity, we assayed sensitivity of the cells to the cationic antibiotic, Zeocin. In a previous study, we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics, an effect that is suppressed by co-expression of wild type PrP, similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system, we find that while ΔCR-dependent toxicity is cell-autonomous, the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrP(C), and the cellular mechanisms underlying the rescuing process.
Assuntos
Comunicação Celular/fisiologia , Proteínas de Membrana/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Animais , Bleomicina/toxicidade , Western Blotting , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Microscopia de Fluorescência , Mutação/genética , Células-Tronco Neurais/efeitos dos fármacos , Proteínas PrPC/toxicidade , Imagem com Lapso de TempoRESUMO
Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.