Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Rural Remote Health ; 24(1): 8306, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212295

RESUMO

INTRODUCTION: There is now strong evidence to support the positive impact of place-based medical education on the recruitment and retention of the rural health workforce in Australia. Much of this work, however, has been undertaken in the context of 'extended rural clinical placement' - students undertaking part of their medical degree in a rural location. Until recently, there were only a few places in Australia in which students could undertake the entirety of their medical degree in a rural area. With the introduction of the Murray-Darling Medical Schools Network (MDMSN) initiative, this dynamic is changing. The MDMSN is part of the Stronger Rural Health Strategy and builds on the Australian Government's existing Rural Health Multidisciplinary Training Program to establish a network of rurally based medical programs in the Murray-Darling region. The MDMSN offers a unique opportunity to explore the effect of complete rural immersion during medical school on subsequent rural practice. This article describes the establishment of a research collaboration intended to ensure the harmonisation of research data collection from the outset of the MDMSN program. METHODS: The MDMSN research collaboration is a longitudinal, multi-university program of work to explore the effect of rurally based medical school programs in the Murray-Darling region. Initially it has been agreed that administrative student data will be collected from existing university datasets to help characterise this novel student cohort. Each university will then distribute an entry survey to all first-year MDMSN students. The survey will collect demographic information as well as information regarding rural background, preferences and future practice intention. Questions have been aligned with and adapted from the Medical Schools Outcomes Database survey, the Australian Bureau of Statistics, and from the literature. This information will be combined with graduate information from the Australian Health Practitioner Regulation Agency. RESULTS: The MDMSN research collaboration will work toward the co-design of research projects, to facilitate and progress multi-site research addressing nationally relevant research questions. Early research efforts are focused on our ability to better understand the new cohort of students embarking on rurally based medical education, their practice intentions and realisation. Subsequent work of the collaboration may lead to deeper understanding of the rural student experience, any effect of 'place', changes in student professional identity over time, and their relationship to subsequent rural practice. CONCLUSION: The MDMSN research collaboration is a proactive initiative that brings together data and experience from five new rurally based medical programs, and answers calls for multi-institution and longitudinal studies. It is uniquely placed to capture the impact of the MDMSN program, including the effect of complete rural immersion on the future practice location of these graduates. Ultimately, the combined research efforts of the MDMSN research collaboration will add knowledge to address the known rural workforce maldistribution, particularly how to attract and retain medical workforce.


Assuntos
Serviços de Saúde Rural , Estudantes de Medicina , Humanos , Austrália , Universidades , Faculdades de Medicina , Recursos Humanos , Escolha da Profissão , Área de Atuação Profissional
2.
Haematologica ; 95(12): 2102-10, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20801899

RESUMO

BACKGROUND: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. DESIGN AND METHODS: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2(b)]→BALB/c [H-2(d)] and the sibling transplant mimic, UBI-GFP/BL6 [H-2(b)]→BALB.B [H-2(b)]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. RESULTS: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. CONCLUSIONS: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells' effectiveness in attenuating graft-versus-host disease.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Mesenquimais/imunologia , Células Estromais/imunologia , Animais , Células Cultivadas , Técnicas de Cocultura , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Doença Enxerto-Hospedeiro/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Estromais/citologia , Células Estromais/metabolismo , Análise de Sobrevida , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
3.
Cytotherapy ; 12(4): 440-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20345215

RESUMO

At its inception, reduced intensity conditioning (RIC) was heralded as a means to limit toxicity after hematopoietic stem cell transplantation (HSCT), especially for the older patient demographic. The aim was to promote the inherent anti-leukemic activity of the transplant whilst reducing toxicity and transplant-related mortality (TRM). More than 10 years on, much has been learnt about the role of conditioning in determining outcomes after transplantation. The use of RIC as a preparative regimen has increased the number of patients that can benefit from HSCT because the initial therapy is less toxic. However, many of the early pioneers of RIC quickly realized that the toxicity from graft-versus-host disease (GvHD) was equally as potent as that from conditioning. Furthermore, questions remain concerning the efficacy of RIC regimens in retaining anti-leukemic immunity, especially in cases of aggressive disease. The undoubted synergy between chemotherapeutic and immunologic treatment of malignancy means that reduction of conditioning intensity to minimal levels may not be entirely logical.


Assuntos
Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas , Leucemia/terapia , Agonistas Mieloablativos/uso terapêutico , Condicionamento Pré-Transplante , Animais , Protocolos Clínicos , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Histocompatibilidade , Humanos , Terapia de Imunossupressão/efeitos adversos , Infecções/etiologia , Leucemia/imunologia , Leucemia/patologia , Agonistas Mieloablativos/efeitos adversos
4.
Transpl Immunol ; 32(3): 188-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25680846

RESUMO

Graft-versus-host disease (GVHD) can be a fatal complication of allogeneic stem cell transplantation (allo-HSCT). GVHD can be classified as acute (aGVHD: up to 100 days) or chronic (cGVHD: after 100 days) based on the time-point of disease occurrence. At present there are a limited number of biomarkers available for use in the clinic. Thus, the aim of this research was to evaluate the biomarker potential of the extensively studied Heat Shock Protein 70 family members (HSPA1A/HSPA1B and HSPA1L) at the messenger RNA (mRNA) level in acute and cGVHD patient cohorts. In the skin biopsies, HSPA1L mRNA expression was lower in patients with severe aGVHD (grades II-III) when compared to those with none or low grade aGVHD (grades 0-I) and normal controls. In whole blood, HSPA1L mRNA expression level was significantly (p = 0.008) up-regulated at 28 days post-transplant in cGVHD patients with a significant area under the curve (AUC = 0.773). In addition, HSPA1B expression in whole blood was significantly higher at 3 months post-transplant in both the aGVHD grade II-III (p = 0.012) and cGVHD (p = 0.027) patients. Our initial results in this small cohort show that quantifying HSPA1L mRNA expression in the whole blood of allo-HSCT patients at day 28 post-allo-HSCT may be a useful predictive biomarker for cGVHD.


Assuntos
Doença Enxerto-Hospedeiro/diagnóstico , Proteínas de Choque Térmico HSP70/metabolismo , Pele/imunologia , Transplante de Células-Tronco , Doença Aguda , Aloenxertos/imunologia , Biomarcadores/metabolismo , Biópsia , Doença Crônica , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , Prognóstico , RNA Mensageiro/genética , Pele/patologia
5.
Transplantation ; 94(5): 456-64, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22890131

RESUMO

BACKGROUND: Regulatory T cells (Tregs) effectively ameliorate graft-versus-host disease (GVHD). The mechanisms underlying Treg therapeutic effect on GVHD are not fully elucidated. This study investigates whether Treg prevention of GVH tissue damage is associated with blocking CD8 effector T-cell tissue invasion, a question not yet addressed in humans. METHOD: Tissue-infiltrating T cells and histopathology scores were detected using an in vitro human GVHD skin explant model, together with immunohistochemistry, cytometric bead array, functional adhesion and migration assays, flow cytometry, and quantitative real-time polymerase chain reaction. RESULTS: Treg intervention during priming significantly decreased effector T-cell infiltration into target tissue (P<0.01) resulting in a striking reduction in the histopathology score of tissue injury (P<0.0001). These results were coupled with reduced CXCR3 and cutaneous lymphocyte antigen expression by effector T cells, together with decreased CXCL10 and CXCL11 expression in target tissue. Treg intervention also impaired the functional interaction of CXCR3 and cutaneous lymphocyte antigen with their specific ligands (P<0.01) and suppressed the secretion of CXCL9, CXCL10, and interferon-γ (P<0.01, P<0.05, and P<0.001, respectively). Late addition of Tregs into the effector phase abolished their ability to suppress effector T-cell tissue invasion, resulting in a total loss of their ability to ameliorate GVH tissue damage. CONCLUSION: Preventing effector T-cell tissue invasion is a critical mechanistic event leading to Treg attenuation of GVH tissue damage. This therapeutic effect is associated with a failure of CD8 T cells to increase tissue homing receptors after allo-stimulation, together with a breakdown of interferon-γ-induced chemoattractant expression in the target tissue.


Assuntos
Quimiotaxia de Leucócito , Doença Enxerto-Hospedeiro/prevenção & controle , Reação Enxerto-Hospedeiro/imunologia , Pele/imunologia , Linfócitos T Reguladores/imunologia , Antígenos Ly/metabolismo , Adesão Celular , Células Cultivadas , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Técnicas de Cocultura , Citometria de Fluxo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Pele/patologia , Técnicas de Cultura de Tecidos
6.
Transplantation ; 86(7): 968-76, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18852664

RESUMO

BACKGROUND: Preparative myeloablative conditioning regimens for allogeneic hematopoietic stem-cell transplantation (HSCT) may control malignancy and facilitate engraftment but also contribute to transplant related mortality, cytokine release, and acute graft-versus-host disease (GVHD). Reduced intensity conditioning (RIC) regimens have decreased transplant related mortality but the incidence of acute GVHD, while delayed, remains unchanged. There are currently no in vivo allogeneic models of RIC HSCT, limiting studies into the mechanism behind RIC-associated GVHD. METHODS: We developed two RIC HSCT models that result in delayed onset GVHD (major histocompatibility complex mismatched (UBI-GFP/BL6 [H-2]-->BALB/c [H-2]) and major histocompatibility complex matched, minor histocompatibility mismatched (UBI-GFP/BL6 [H-2]-->BALB.B [H-2])) enabling the effect of RIC on chimerism, dendritic cell (DC) chimerism, and GVHD to be investigated. RESULTS: In contrast with myeloablative conditioning, we observed that RIC-associated delayed-onset GVHD is characterized by low production of tumor necrosis factor-alpha, maintenance of host DC, phenotypic DC activation, increased T-regulatory cell numbers, and a delayed emergence of activated donor DC. Furthermore, changes to the peritransplant milieu in the recipient after RIC lead to the altered activation of DC and the induction of T-regulatory responses. Reduced intensity conditioning recipients suffer less early damage to GVHD target organs. However, as donor cells engraft, activated donor DC and rising levels of tumor necrosis factor-alpha are associated with a later onset of severe GVHD. CONCLUSIONS: Delineating the mechanisms underlying delayed onset GVHD in RIC HSCT recipients is vital to improve the prediction of disease onset and allow more targeted interventions for acute GVHD.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Animais , Ciclofosfamida/administração & dosagem , Ciclofosfamida/uso terapêutico , Esquema de Medicação , Feminino , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/fisiopatologia , Injeções Intraperitoneais , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/cirurgia , Transplante Homólogo , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados , Vidarabina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA