Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(46): 17395-17408, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31586031

RESUMO

Piezo1 is a mechanosensitive cation channel with widespread physiological importance; however, its role in the heart is poorly understood. Cardiac fibroblasts help preserve myocardial integrity and play a key role in regulating its repair and remodeling following stress or injury. Here we investigated Piezo1 expression and function in cultured human and mouse cardiac fibroblasts. RT-PCR experiments confirmed that Piezo1 mRNA in cardiac fibroblasts is expressed at levels similar to those in endothelial cells. The results of a Fura-2 intracellular Ca2+ assay validated Piezo1 as a functional ion channel that is activated by its agonist, Yoda1. Yoda1-induced Ca2+ entry was inhibited by Piezo1 blockers (gadolinium and ruthenium red) and was reduced proportionally by siRNA-mediated Piezo1 knockdown or in murine Piezo1+/- cells. Results from cell-attached patch clamp recordings on human cardiac fibroblasts established that they contain mechanically activated ion channels and that their pressure responses are reduced by Piezo1 knockdown. Investigation of Yoda1 effects on selected remodeling genes indicated that Piezo1 activation increases both mRNA levels and protein secretion of IL-6, a pro-hypertrophic and profibrotic cytokine, in a Piezo1-dependent manner. Moreover, Piezo1 knockdown reduced basal IL-6 expression from cells cultured on softer collagen-coated substrates. Multiplex kinase activity profiling combined with kinase inhibitor experiments and phosphospecific immunoblotting established that Piezo1 activation stimulates IL-6 secretion via the p38 mitogen-activated protein kinase downstream of Ca2+ entry. In summary, cardiac fibroblasts express mechanically activated Piezo1 channels coupled to secretion of the paracrine signaling molecule IL-6. Piezo1 may therefore be important in regulating cardiac remodeling.


Assuntos
Interleucina-6/genética , Canais Iônicos/genética , Miocárdio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Sinalização do Cálcio/genética , Endopeptidases/genética , Células Endoteliais/química , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Interleucina-6/química , Canais Iônicos/química , Sistema de Sinalização das MAP Quinases/genética , Mecanotransdução Celular/genética , Camundongos , Miocárdio/química , Fosforilação/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Tioléster Hidrolases/genética , Proteínas Quinases p38 Ativadas por Mitógeno/química
2.
FASEB J ; 32(9): 4941-4954, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601781

RESUMO

Recent studies suggest that cardiac fibroblast-specific p38α MAPK contributes to the development of cardiac hypertrophy, but the underlying mechanism is unknown. Our study used a novel fibroblast-specific, tamoxifen-inducible p38α knockout (KO) mouse line to characterize the role of fibroblast p38α in modulating cardiac hypertrophy, and we elucidated the mechanism. Myocardial injury was induced in tamoxifen-treated Cre-positive p38α KO mice or control littermates via chronic infusion of the ß-adrenergic receptor agonist isoproterenol. Cardiac function was assessed by pressure-volume conductance catheter analysis and was evaluated for cardiac hypertrophy at tissue, cellular, and molecular levels. Isoproterenol infusion in control mice promoted overt cardiac hypertrophy and dysfunction (reduced ejection fraction, increased end systolic volume, increased cardiac weight index, increased cardiomyocyte area, increased fibrosis, and up-regulation of myocyte fetal genes and hypertrophy-associated microRNAs). Fibroblast-specific p38α KO mice exhibited marked protection against myocardial injury, with isoproterenol-induced alterations in cardiac function, histology, and molecular markers all being attenuated. In vitro mechanistic studies determined that cardiac fibroblasts responded to damaged myocardium by secreting several paracrine factors known to induce cardiomyocyte hypertrophy, including IL-6, whose secretion was dependent upon p38α activity. In conclusion, cardiac fibroblast p38α contributes to cardiomyocyte hypertrophy and cardiac dysfunction, potentially via a mechanism involving paracrine fibroblast-to-myocyte IL-6 signaling.-Bageghni, S. A., Hemmings, K. E., Zava, N., Denton, C. P., Porter, K. E., Ainscough, J. F. X., Drinkhill, M. J., Turner, N. A. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism.


Assuntos
Fibroblastos/efeitos dos fármacos , Interleucina-6/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Knockout , Miocárdio/patologia
3.
IUBMB Life ; 70(7): 649-657, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659130

RESUMO

Cardiovascular disease is a leading cause of morbidity and mortality. Smooth muscle cells (SMC) comprising the vascular wall can switch phenotypes from contractile to synthetic, which can promote the development of aberrant remodelling and intimal hyperplasia (IH). MicroRNA-21 (miR-21) is a short, non-coding RNA that has been implicated in cardiovascular diseases including proliferative vascular disease and ischaemic heart disease. However, its involvement in the complex development of atherosclerosis has yet to be ascertained. Smooth muscle cells (SMC) were isolated from human saphenous veins (SV). miR-21 was over-expressed and the impact of this on morphology, proliferation, gene and protein expression related to synthetic SMC phenotypes monitored. Over-expression of miR-21 increased the spread cell area and proliferative capacity of SV-SMC and expression of MMP-1, whilst reducing RECK protein, indicating a switch to the synthetic phenotype. Furthermore, platelet-derived growth factor BB (PDGF-BB; a growth factor implicated in vasculoproliferative conditions) was able to induce miR-21 expression via the PI3K and ERK signalling pathways. This study has revealed a mechanism whereby PDGF-BB induces expression of miR-21 in SV-SMC, subsequently driving conversion to a synthetic SMC phenotype, propagating the development of IH. Thus, these signaling pathways may be attractive therapeutic targets to minimise progression of the disease. © 2018 IUBMB Life, 70(7):649-657, 2018.


Assuntos
MicroRNAs/genética , Músculo Liso Vascular/citologia , Veia Safena/citologia , Aterosclerose/genética , Becaplermina/farmacologia , Células Cultivadas , Ponte de Artéria Coronária , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-1alfa/genética , Sistema de Sinalização das MAP Quinases , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Veia Safena/fisiologia
4.
Toxicol Appl Pharmacol ; 351: 46-56, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29775649

RESUMO

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.


Assuntos
Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Receptor B1 da Bradicinina/biossíntese , Receptor 4 Toll-Like/biossíntese , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor B1 da Bradicinina/agonistas , Receptor B1 da Bradicinina/genética , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética
5.
J Mol Cell Cardiol ; 94: 189-200, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26542796

RESUMO

Cardiac fibroblasts (CF) are well-established as key regulators of extracellular matrix (ECM) turnover in the context of myocardial remodelling and fibrosis. Recently, this cell type has also been shown to act as a sensor of myocardial damage by detecting and responding to damage-associated molecular patterns (DAMPs) upregulated with cardiac injury. CF express a range of innate immunity pattern recognition receptors (TLRs, NLRs, IL-1R1, RAGE) that are stimulated by a host of different DAMPs that are evident in the injured or remodelling myocardium. These include intracellular molecules released by necrotic cells (heat shock proteins, high mobility group box 1 protein, S100 proteins), proinflammatory cytokines (interleukin-1α), specific ECM molecules up-regulated in response to tissue injury (fibronectin-EDA, tenascin-C) or molecules modified by a pathological environment (advanced glycation end product-modified proteins observed with diabetes). DAMP receptor activation on fibroblasts is coupled to altered cellular function including changes in proliferation, migration, myofibroblast transdifferentiation, ECM turnover and production of fibrotic and inflammatory paracrine factors, which directly impact on the heart's ability to respond to injury. This review gives an overview of the important role played by CF in responding to myocardial DAMPs and how the DAMP/CF axis could be exploited experimentally and therapeutically.


Assuntos
Alarminas/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Alarminas/genética , Animais , Biomarcadores , Humanos , Inflamassomos/metabolismo , Miocárdio/patologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Remodelação Ventricular/genética
6.
Eur J Immunol ; 44(11): 3342-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25168419

RESUMO

Interest in manipulating the immunosuppressive powers of Foxp3-expressing T regulatory cells as an immunotherapy has been tempered by their reported ability to produce proinflammatory cytokines when manipulated in vitro, or in vivo. Understanding processes that can limit this potentially deleterious effect of Treg cells in a therapeutic setting is therefore important. Here, we have studied this using induced (i) Treg cells in which de novo Foxp3 expression is driven by TCR-stimulation in vitro in the presence of TGF-ß. We show that iTreg cells can produce significant amounts of three proinflammatory cytokines (IFN-γ, GM-CSF and TNF-α) upon secondary TCR stimulation. GM-CSF is a critical T-cell derived cytokine for the induction of EAE in mice. Despite their apparent capacity to produce GM-CSF, myelin autoantigen-responsive iTreg cells were unable to provoke EAE. Instead, they maintained strong suppressive function in vivo, preventing EAE induction by their CD4+ Foxp3- counterparts. We identified that although iTreg cells maintained the ability to produce IFN-γ and TNF-α in vivo, their ability to produce GM-CSF was selectively degraded upon antigen stimulation under inflammatory conditions. Furthermore, we show that IL-6 and IL-27 individually, or IL-2 and TGF-ß in combination, can mediate the selective loss of GM-CSF production by iTreg cells.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Inflamação/imunologia , Linfócitos T Reguladores/imunologia , Animais , Fatores de Transcrição Forkhead/biossíntese , Imunoterapia , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-12/farmacologia , Interleucina-2/farmacologia , Interleucina-6/farmacologia , Interleucinas/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/imunologia , Células Th1 , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
8.
J Mol Cell Cardiol ; 74: 240-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24927876

RESUMO

Type 2 diabetes (T2DM) promotes premature atherosclerosis and inferior prognosis after arterial reconstruction. Vascular smooth muscle cells (SMC) respond to patho/physiological stimuli, switching between quiescent contractile and activated synthetic phenotypes under the control of microRNAs (miRs) that regulate multiple genes critical to SMC plasticity. The importance of miRs to SMC function specifically in T2DM is unknown. This study was performed to evaluate phenotype and function in SMC cultured from non-diabetic and T2DM patients, to explore any aberrancies and investigate underlying mechanisms. Saphenous vein SMC cultured from T2DM patients (T2DM-SMC) exhibited increased spread cell area, disorganised cytoskeleton and impaired proliferation relative to cells from non-diabetic patients (ND-SMC), accompanied by a persistent, selective up-regulation of miR-143 and miR-145. Transfection of premiR-143/145 into ND-SMC induced morphological and functional characteristics similar to native T2DM-SMC; modulating miR-143/145 targets Kruppel-like factor 4, alpha smooth muscle actin and myosin VI. Conversely, transfection of antimiR-143/145 into T2DM-SMC conferred characteristics of the ND phenotype. Exposure of ND-SMC to transforming growth factor beta (TGFß) induced a diabetes-like phenotype; elevated miR-143/145, increased cell area and reduced proliferation. Furthermore, these effects were dependent on miR-143/145. In conclusion, aberrant expression of miR-143/145 induces a distinct saphenous vein SMC phenotype that may contribute to vascular complications in patients with T2DM, and is potentially amenable to therapeutic manipulation.


Assuntos
Diabetes Mellitus Tipo 2/genética , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Veia Safena/metabolismo , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Humanos , Hipoglicemiantes/uso terapêutico , Interleucina-1alfa/farmacologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Cultura Primária de Células , Veia Safena/efeitos dos fármacos , Veia Safena/patologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
9.
Matrix Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925225

RESUMO

Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214-3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214-3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214-3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.

10.
Biochem Biophys Res Commun ; 430(1): 419-24, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23206705

RESUMO

Pre-clinical studies suggest that the p38 MAPK signaling pathway plays a detrimental role in cardiac remodeling, but its role in cardiac fibroblast (CF) function is not well defined. We aimed to identify the p38 MAPK subtypes expressed by human CF, study their activation in response to proinflammatory cytokines, and determine which subtypes were important for expression of specific cytokines and matrix metalloproteinases (MMPs). Quantitative real-time RT-PCR analysis of mRNA levels in human CF cultured from multiple patients revealed a consistent pattern of expression with p38α being most abundant, followed by p38γ, then p38δ and only low expression of p38ß (3% of p38α mRNA levels). Immunoblotting confirmed marked protein expression of p38α, γ and δ, with little or no expression of p38ß. Phospho-ELISA and combined immunoprecipitation/immunoblotting techniques demonstrated that the proinflammatory cytokines IL-1α and TNFα selectively activated p38α and p38γ, but not p38δ. Selective p38α siRNA gene silencing reduced IL-1α-induced IL-6 and MMP-3 mRNA expression and protein secretion, without affecting IL-1α-induced IL-1ß and MMP-9 mRNA expression. In conclusion, human CF express the α, γ and δ subtypes of p38 MAPK, and the α subtype is important for IL-1α-induced IL-6 and MMP-3 expression in this cell type.


Assuntos
Fibroblastos/metabolismo , Interleucina-6/biossíntese , Metaloproteinase 3 da Matriz/biossíntese , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miocárdio/citologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-1alfa/farmacologia , Metaloproteinase 3 da Matriz/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/genética
11.
Biochem Biophys Res Commun ; 420(4): 828-33, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22465119

RESUMO

Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α). TNF-α can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-α on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-α (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-α, an effect that was abolished by co-culture with E2. TNF-α increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-α alone. SV-EC migration was significantly impaired by TNF-α (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-α increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-α potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there was no modulation by E2 in either cell-type. In conclusion, TNF-α induced SV neointima formation, increased SMC proliferation and migration, impaired SV-EC migration and increased expression of adhesion molecules. E2 exerted distinct cell-type and function-specific modulation, the mechanisms underlying which are worthy of further detailed study.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Estradiol/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Neointima/patologia , Fator de Necrose Tumoral alfa/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/patologia , Feminino , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Músculo Liso Vascular/patologia , Molécula 1 de Adesão de Célula Vascular/biossíntese
12.
IUBMB Life ; 64(2): 143-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22215527

RESUMO

Cardiac fibroblasts (CF) play a key role in orchestrating the structural remodeling of the myocardium in response to injury or stress, in part through direct regulation of extracellular matrix (ECM) turnover. The matrix metalloproteinases (MMPs) are a family of over 25 zinc-dependent proteases that together have the capacity to degrade all the protein components of the ECM. Fibroblasts are a major source of several MMPs in the heart, thereby representing a viable therapeutic target for regulating ECM turnover in cardiac pathologies characterized by adverse remodeling, such as myocardial infarction, cardiomyopathy, hypertension and heart failure. This review summarizes current knowledge on the identity and regulation of MMPs expressed by CF and discusses future directions for reducing adverse myocardial remodeling by modulating the expression and/or activity of CF-derived MMPs.


Assuntos
Fibroblastos/fisiologia , Regulação da Expressão Gênica , Metaloproteinases da Matriz Secretadas/genética , Miocárdio/enzimologia , Animais , Fibroblastos/enzimologia , Humanos , Metaloproteinases da Matriz Secretadas/metabolismo , Miocárdio/citologia , Regiões Promotoras Genéticas , Transcrição Gênica
13.
J Surg Res ; 175(2): 343-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21601886

RESUMO

BACKGROUND: Stromelysin (MMP-3) is an important regulator of vascular smooth muscle cell (SMC) invasion, a key contributor to saphenous vein (SV) bypass graft failure. The 5A allele of the common -1612 MMP-3 5A/6A promoter polymorphism reportedly confers increased promoter activity, MMP-3 tissue expression, and susceptibility to a number of vascular pathologies. The aim of this study was to determine whether the MMP-3 5A/6A polymorphism directly influences endogenous MMP-3 expression levels and, consequently, cell invasion, in SV-derived SMC cultured from patients with different genotypes. MATERIAL AND METHODS: Genotyping of 226 patients revealed -1612 MMP-3 5A/6A genotype frequencies of 20.8% 5A/5A, 52.7% 5A/6A, and 26.5% 6A/6A. Using a standardized, controlled protocol, we investigated cytokine- and growth factor-induced MMP-3 expression (real-time polymerase chain reaction [RT-PCR], ELISA) and SV-SMC invasion (Boyden chamber with Matrigel barrier) using cultured SV-SMC from patients with different MMP-3 genotypes. RESULTS: Despite observing a strong correlation between MMP-3 mRNA levels and MMP-3 protein secretion, no significant differences were apparent in MMP-3 expression levels or cell invasion between cells with different MMP-3 5A/6A genotypes. CONCLUSIONS: Our data suggest that the MMP-3 5A/6A promoter polymorphism in isolation does not influence levels of MMP-3 secretion or cellular invasion in human SV-SMC.


Assuntos
Movimento Celular/genética , Genótipo , Metaloproteinase 3 da Matriz/genética , Miócitos de Músculo Liso/citologia , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Idoso , Alelos , Células Cultivadas , Estudos de Coortes , Ponte de Artéria Coronária , Rejeição de Enxerto , Humanos , Interleucina-1/farmacologia , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Estudos Retrospectivos , Veia Safena/transplante , Regulação para Cima/efeitos dos fármacos , Enxerto Vascular
14.
Cells ; 11(7)2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406763

RESUMO

PIEZO1 is a subunit of mechanically-activated, nonselective cation channels. Gain-of-function PIEZO1 mutations are associated with dehydrated hereditary stomatocytosis (DHS), a type of anaemia, due to abnormal red blood cell function. Here, we hypothesised additional effects on the heart. Consistent with this hypothesis, mice engineered to contain the M2241R mutation in PIEZO1 to mimic a DHS mutation had increased cardiac mass and interventricular septum thickness at 8-12 weeks of age, without altered cardiac contractility. Myocyte size was greater and there was increased expression of genes associated with cardiac hypertrophy (Anp, Acta1 and ß-MHC). There was also cardiac fibrosis, increased expression of Col3a1 (a gene associated with fibrosis) and increased responses of isolated cardiac fibroblasts to PIEZO1 agonism. The data suggest detrimental effects of excess PIEZO1 activity on the heart, mediated in part by amplified PIEZO1 function in cardiac fibroblasts.


Assuntos
Cardiomegalia , Mutação com Ganho de Função , Canais Iônicos , Animais , Cardiomegalia/genética , Fibrose , Canais Iônicos/genética , Camundongos
15.
Expert Rev Mol Med ; 13: e22, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21718586

RESUMO

The advent of statins has revolutionised the treatment of patients with raised plasma cholesterol and increased cardiovascular risk. However, the beneficial effects of this class of drugs are far greater than would be expected from lowering of cholesterol alone, and they appear to offer cardiovascular protection at multiple levels, primarily as a result of their pleiotropic activity. Indeed, their favourable effects on the heart seem to be mediated in part through reduced prenylation and subsequent inhibition of small GTPases, particularly those of the Rho family. Such statin-mediated effects are manifested by reduced onset of heart failure and improvements in cardiac dysfunction and remodelling in heart failure patients. Experimental studies have shown that statins mediate their effects on the two major resident cell types of the heart--cardiomyocytes and cardiac fibroblasts--and thus facilitate improvement of adverse remodelling of ischaemic or non-ischaemic aetiology. This review examines evidence for the cellular effects of statins in the heart, and discusses the underlying molecular mechanisms at the level of the cardiomyocyte (hypertrophy, cell death and contractile function) and the cardiac fibroblast (differentiation, proliferation, migration and extracellular matrix synthesis). The prospects for future therapies and ongoing clinical trials are also summarised.


Assuntos
Colesterol/sangue , Coração/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases , Remodelação Ventricular/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Colesterol/biossíntese , Fibroblastos/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos
16.
Cells ; 10(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922466

RESUMO

Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.


Assuntos
Reprogramação Celular , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Canais Iônicos/fisiologia , Mecanotransdução Celular , Miócitos Cardíacos/fisiologia , Animais , Sinalização do Cálcio , Fibroblastos/citologia , Humanos , Miócitos Cardíacos/citologia
17.
Cells ; 10(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943783

RESUMO

MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3' untranslated region (3'-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.


Assuntos
Proliferação de Células/genética , MicroRNAs/genética , Neoplasias/genética , Apoptose/genética , Cardiotônicos/metabolismo , Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/patologia
18.
Cells ; 10(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34359915

RESUMO

In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p < 0.05) increased mRNA expression of Nppb, as well as induction of genes related to myofibroblast differentiation. Moreover, BNP protein secretion was upregulated 5.3-fold in stretched cardiac fibroblasts. Recombinant BNP inhibited TGFß1-induced Acta2 expression. Nppb expression was >20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Miocárdio/citologia , Receptores do Fator Natriurético Atrial/genética , Estresse Mecânico , Animais , Fibroblastos/efeitos dos fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores do Fator Natriurético Atrial/metabolismo , Proteínas Recombinantes/farmacologia
19.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923614

RESUMO

Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.


Assuntos
Senescência Celular , Dano ao DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , MicroRNAs/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Idoso , Efeito Espectador/efeitos dos fármacos , Efeito Espectador/genética , Senescência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , MicroRNAs/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
20.
Cells ; 10(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34831181

RESUMO

Coagulation factor (F) Xa induces proinflammatory responses through activation of protease-activated receptors (PARs). However, the effect of FXa on cardiac fibroblasts (CFs) and the contribution of PARs in FXa-induced cellular signalling in CF has not been fully characterised. To answer these questions, human and rat CFs were incubated with FXa (or TRAP-14, PAR-1 agonist). Gene expression of pro-fibrotic and proinflammatory markers was determined by qRT-PCR after 4 and 24 h. Gene silencing of F2R (PAR-1) and F2RL1 (PAR-2) was achieved using siRNA. MCP-1 protein levels were measured by ELISA of FXa-conditioned media at 24 h. Cell proliferation was assessed after 24 h of incubation with FXa ± SCH79797 (PAR-1 antagonist). In rat CFs, FXa induced upregulation of Ccl2 (MCP-1; >30-fold at 4 h in atrial and ventricular CF) and Il6 (IL-6; ±7-fold at 4 h in ventricular CF). Increased MCP-1 protein levels were detected in FXa-conditioned media at 24 h. In human CF, FXa upregulated the gene expression of CCL2 (>3-fold) and IL6 (>4-fold) at 4 h. Silencing of F2R (PAR-1 gene), but not F2RL1 (PAR-2 gene), downregulated this effect. Selective activation of PAR-1 by TRAP-14 increased CCL2 and IL6 gene expression; this was prevented by F2R (PAR-1 gene) knockdown. Moreover, SCH79797 decreased FXa-induced proliferation after 24 h. In conclusion, our study shows that FXa induces overexpression of proinflammatory genes in human CFs via PAR-1, which was found to be the most abundant PARs isoform in this cell type.


Assuntos
Fator Xa/metabolismo , Fibroblastos/patologia , Inflamação/patologia , Miocárdio/metabolismo , Receptor PAR-1/metabolismo , Adulto , Animais , Bovinos , Proliferação de Células , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fibroblastos/metabolismo , Átrios do Coração/patologia , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Ratos Wistar , Receptor PAR-1/agonistas , Receptor PAR-1/genética , Trombina/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA