RESUMO
Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.
Assuntos
Crotonatos/farmacologia , Vírus de DNA/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Nitrilas/farmacologia , Toluidinas/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Linhagem Celular , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/virologia , Vírus de DNA/patogenicidade , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/virologia , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Vírus JC/efeitos dos fármacos , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/virologia , Neuroglia/virologia , Viroses/tratamento farmacológico , Viroses/genética , Viroses/virologiaRESUMO
BACKGROUND: The multi-drug resistance transporter ABCG2, a member of the ATP-binding cassette (ABC) transporter family, mediates the efflux of different immunotherapeutics used in multiple sclerosis (MS), e.g., teriflunomide (teri), cladribine, and mitoxantrone, across cell membranes and organelles. Hence, the modulation of ABCG2 activity could have potential therapeutic implications in MS. In this study, we aimed at investigating the functional impact of abcg2 modulation on teri-induced effects in vitro and in vivo. METHODS: T cells from C57BL/6 J wild-type (wt) and abcg2-knockout (KO) mice were treated with teri at different concentrations with/without specific abcg2-inhibitors (Ko143; Fumitremorgin C) and analyzed for intracellular teri concentration (HPLC; LS-MS/MS), T cell apoptosis (annexin V/PI), and proliferation (CSFE). Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6J by active immunization with MOG35-55/CFA. Teri (10 mg/kg body weight) was given orally once daily after individual disease onset. abcg2-mRNA expression (spinal cord, splenic T cells) was analyzed using qRT-PCR. RESULTS: In vitro, intracellular teri concentration in T cells was 2.5-fold higher in abcg2-KO mice than in wt mice. Teri-induced inhibition of T cell proliferation was two fold increased in abcg2-KO cells compared to wt cells. T cell apoptosis demonstrated analogous results with 3.1-fold increased apoptosis after pharmacological abcg2-inhibition in wt cells. abcg2-mRNA was differentially regulated during different phases of EAE within the central nervous system and peripheral organs. In vivo, at a dosage not efficacious in wt animals, teri treatment ameliorated clinical EAE in abcg2-KO mice which was accompanied by higher spinal cord tissue concentrations of teri. CONCLUSION: Functional relevance of abcg2 modulation on teri effects in vitro and in vivo warrants further investigation as a potential determinant of interindividual treatment response in MS, with potential implications for other immunotherapies.
Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Crotonatos/uso terapêutico , Modelos Animais de Doenças , Imunoterapia/métodos , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Toluidinas/uso terapêutico , Animais , Crotonatos/farmacologia , Feminino , Humanos , Hidroxibutiratos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Nitrilas , Ratos , Linfócitos T/efeitos dos fármacos , Toluidinas/farmacologiaRESUMO
Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high levels of glucose. Flux through GK is also responsible for reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can activate GK could provide a therapeutic benefit. Herein we report the further structure activity studies of a novel series of glucokinase activators (GKA). These studies led to the identification of pyridine 72 as a potent GKA that lowered post-prandial glucose in normal C57BL/6J mice, and after 14d dosing in ob/ob mice.
Assuntos
Ativadores de Enzimas/química , Glucoquinase/química , Hipoglicemiantes/química , Animais , Sítios de Ligação , Glicemia/análise , Cristalografia por Raios X , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/uso terapêutico , Glucoquinase/metabolismo , Teste de Tolerância a Glucose , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/metabolismoRESUMO
Bruton's tyrosine kinase (BTK) is a key component in the B-cell receptor signaling pathway and is consequently a target for in vivo imaging of B-cell malignancies as well as in multiple sclerosis (MS) with positron emission tomography (PET). A recent Phase 2b study with Sanofi's BTK inhibitor, Tolebrutinib (also known as [a.k.a.] SAR442168, PRN2246, or BTK'168) showed significantly reduced disease activity associated with MS. Herein, we report the radiosynthesis of [11 C]Tolebrutinib ([11 C]5) as a potential PET imaging agent for BTK. The N-[11 C]acrylamide moiety of [11 C]5 was labeled by 11 C-carbonylation starting from [11 C]CO, iodoethylene, and the secondary amine precursor via a novel palladium-NiXantphos-mediated carbonylation protocol, and the synthesis was fully automated using a commercial carbon-11 synthesis platform (TracerMaker™, Scansys Laboratorieteknik). [11 C]5 was obtained in a decay-corrected radiochemical yield of 37 ± 2% (n = 5, relative to starting [11 C]CO activity) in >99% radiochemical purity, with an average molar activity of 45 GBq/µmol (1200 mCi/µmol). We envision that this methodology will be generally applicable for the syntheses of labeled N-acrylamides.
Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Radioisótopos de Carbono/química , Paládio/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Tolmetino/química , Tolmetino/síntese química , Técnicas de Química Sintética , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/farmacologia , Radioquímica , Tolmetino/farmacologiaRESUMO
Microorganisms have evolved to produce specific end products for many reasons, including maintaining redox balance between NAD+ and NADH. The yeast Saccharomyces cerevisiae, for example, produces ethanol as a primary end product from glucose for the regeneration of NAD+. Engineered S. cerevisiae strains have been developed to ferment lignocellulosic sugars, such as xylose, to produce lactic acid by expression of a heterologous lactate dehydrogenase (ldhA from Rhizopus oryzae) without genetic perturbation to the native ethanol pathway. Surprisingly, the engineered yeast strains predominantly produce ethanol from glucose, but produce lactic acid as the major product from xylose. Here, we provide initial evidence that the shift in product formation from ethanol to lactic acid during xylose fermentation is at least partially dependent on the presence of functioning monocarboxylate transporter genes/proteins, including JEN1 and ADY2, which are downregulated and unstable in the presence of glucose, but upregulated/stable on xylose. Future yeast metabolic engineering studies may find the feedstock/carbon selection, such as xylose, an important step toward improving the yield of target end products.
Assuntos
L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica , Rhizopus/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Regulação para Baixo , Etanol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Glucose/metabolismo , L-Lactato Desidrogenase/genética , Transportadores de Ácidos Monocarboxílicos/genética , Rhizopus/genética , Saccharomyces cerevisiae/genética , Deleção de Sequência , Simportadores/genética , TransgenesRESUMO
Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast.
Assuntos
Microbiologia Industrial , Fenótipo , Saccharomyces cerevisiae/fisiologia , Biotecnologia , Etanol/metabolismo , Fermentação , Citometria de Fluxo , Genoma Fúngico , Concentração de Íons de Hidrogênio , Ploidias , Saccharomyces cerevisiae/classificação , Estresse FisiológicoRESUMO
Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a biodegradable surfactant, ethyl-ß-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular ß-glucosidase (GH1-1) originating from Neurospora crassa. We identified the formation of ethyl-ß-d-glucoside in SSF of cellulose by the EJ2 strain owing to transglycosylation activity of GH1-1. The EJ2 strain coproduced 0.34 ± 0.03 g ethanol/g cellulose and 0.06 ± 0.00 g ethyl-ß-d-glucoside/g cellulose at a rate of 0.30 ± 0.02 g·L-1 ·h-1 and 0.09 ± 01 g·L-1 ·h-1 , respectively, during the SSF of Avicel PH-101 cellulose, supplemented only with Celluclast 1.5 L. Herein, we report a possible coproduction of a value-added chemical (alkyl-glucosides) during SSF of cellulose exploiting the transglycosylation activity of GH1-1 in engineered S. cerevisiae. This coproduction could have a substantial effect on the overall technoeconomic feasibility of theSSF of cellulose.
Assuntos
Celulose/metabolismo , Etanol/metabolismo , Glucosídeos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosídeos/genética , Glicosilação , Neurospora crassa/enzimologia , Neurospora crassa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismoRESUMO
Engineered S. cerevisiae employing the xylose reductase pathway enables efficient xylose valorization to fuels and chemicals. However, toxicity of thermochemically pretreated biomass hydrolysate on S. cerevisiae is one of the key technical challenges to upgrade biomass-derived sugars including xylose and glucose into high-value products. We investigated the effect of glycolaldehyde, one of the biomass-derived highly toxic aldehyde compounds, and its combinatorial inhibitory effect with other major fermentation inhibitors commonly found in plant hydrolysate such as methylglyoxal, 5-HMF, furfural, vanillin, and acetic acid on engineered xylose-fermenting S. cerevisiae in xylose and/or glucose media. We elucidated that glycolaldehyde and methylglyoxal are the key inhibitory short-aliphatic aldehydes on engineered xylose-fermenting S. cerevisiae in xylose-containing medium. Indeed, the degree of toxicity of these tested fermentation inhibitors varies with the sole carbon source of the medium. We demonstrate that genome integration of an extra copy of autologous GRE2 with its native promotor substantially improved the toxic tolerance of engineered xylose-fermenting S. cerevisiae to major inhibitory compounds including glycolaldehyde in the xylose-containing medium, and xylose-rich, lignocellulosic hydrolysate derived from Miscanthus giganteus, and concurrently improved the ethanol fermentation profile. Outcomes of this study will aid the development of next-generation robust S. cerevisiae strains for efficient fermentation of hexose and pentose sugars found in biomass hydrolysate.
Assuntos
Acetaldeído/análogos & derivados , Engenharia Metabólica , Oxirredutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Xilose/metabolismo , Acetaldeído/metabolismo , Biomassa , Fermentação , Glucose/metabolismo , Oxirredutases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
BACKGROUND: The direct anterior approach (DAA) for primary hip replacement has been gaining more attention and widespread use in recent years. There are a number of published studies evaluating the learning curve when a surgeon changes technique; these studies typically look at complications during the initial cases. This study examines procedure and total operating room (OR) time along with all complications for a surgeon transitioning from the posterolateral approach (PA) to DAA. METHODS: A retrospective review of a single surgeon series of 1000 initial DAA procedures. Total OR time, procedure time, and complications were collected and analyzed. One-way analysis of variance and post hoc least significant difference tests were used for statistical analysis. RESULTS: There was an initial increase in both procedure and OR times compared with the mature PA, by 34% and 30%, respectively. The procedure time became statistically equivalent to the mature PA time after the 400th DAA case, and significantly shorter after the 850th case. The total OR time became statistically equivalent after the 900th DAA case. There were 18 early (<90 days) and 18 late reoperations performed in this series with a nonsignificant trend toward femoral complications occurring early in the series. Minimum follow-up time was 2 years. CONCLUSION: There was an initial increase in both total OR time and procedure time when an experienced surgeon introduced the DAA. By the end of the series, procedure time was significantly shorter and total OR time was equivalent. Complications overall were low and femoral complications decreased with time.
Assuntos
Artroplastia de Quadril/métodos , Curva de Aprendizado , Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/estatística & dados numéricos , Fêmur/cirurgia , Humanos , Duração da Cirurgia , Reoperação/estatística & dados numéricos , Estudos Retrospectivos , Cirurgiões/psicologia , Cirurgiões/estatística & dados numéricosRESUMO
Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+-linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.
Assuntos
Fermentação , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Biocombustíveis/microbiologia , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Microbiologia Industrial , Lignina/metabolismo , Microrganismos Geneticamente Modificados , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Engenharia de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Xilitol/metabolismoRESUMO
Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a ß-glucosidase (GH1-1, which also acts as a ß-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast.
Assuntos
Ácido Láctico/metabolismo , Lactose/metabolismo , Leite , Saccharomyces cerevisiae/metabolismo , Soro do Leite/metabolismo , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Leite/microbiologia , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Rhizopus/genética , Saccharomyces cerevisiae/genética , Soro do Leite/microbiologiaRESUMO
BACKGROUND: This study examines patient and surgeon reported outcome measures, complications during index admission, length of stay (LOS), and discharge disposition in a series of total hip replacements (THR) performed via the direct anterior (DA) or posterolateral (PL) approach. METHODS: Five surgeons performed 2698 total hip replacements (1457 DA vs 1241 PL) between January 2010 and June 2015. Complications during index admission were recorded using billing and claims data. Harris Hip Scores (HHS) and Hip disability and Osteoarthritis Outcome Scores (HOOS) were collected in a subset of patients. RESULTS: Patients in the DA group had shorter LOS (2.3 DA vs 2.7 PL days, P < .001) and a larger proportion of patient discharges to home (79.0% DA vs 68.7% PL, P < .001). Surgical (0.75% DA vs 0.73% PL, P = .961) and medical (8.4% DA vs 8.1% PL, P = .766) complications during index admission were equivalent between groups. HHS (n = 462) favored the DA group at an early follow-up (P < .001), but did not differ at 1 year (P = .478). Logistic regression revealed that patients in the DA group were more likely to report no pain, no limp, walk unlimited distances, and climb stairs without the use of the railing at 3- to 6-month follow-up (P < .001). HOOSs were equivalent at all follow-ups regardless of approach. CONCLUSION: Patients in the DA group had shorter LOS and were more likely to be discharged home. The DA group had better HHS at 3- to 6-month follow-up than patients in the PL group, with no difference in medical or surgical complications during index admission.
Assuntos
Artroplastia de Quadril/métodos , Artroplastia de Quadril/estatística & dados numéricos , Medidas de Resultados Relatados pelo Paciente , Complicações Pós-Operatórias/epidemiologia , Idoso , Artroplastia de Quadril/efeitos adversos , Feminino , Hospitalização , Humanos , Tempo de Internação , Masculino , Maryland/epidemiologia , Pessoa de Meia-Idade , Duração da Cirurgia , Osteoartrite/cirurgia , Dor/cirurgia , Alta do Paciente , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
UNLABELLED: Efficient microbial utilization of cellulosic sugars is essential for the economic production of biofuels and chemicals. Although the yeast Saccharomyces cerevisiae is a robust microbial platform widely used in ethanol plants using sugar cane and corn starch in large-scale operations, glucose repression is one of the significant barriers to the efficient fermentation of cellulosic sugar mixtures. A recent study demonstrated that intracellular utilization of cellobiose by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular ß-glucosidase (encoded by gh1-1) can alleviate glucose repression, resulting in the simultaneous cofermentation of cellobiose and nonglucose sugars. Here we report enhanced cellobiose fermentation by engineered yeast expressing cdt-1 and gh1-1 through laboratory evolution. When cdt-1 and gh1-1 were integrated into the genome of yeast, the single copy integrant showed a low cellobiose consumption rate. However, cellobiose fermentation rates by engineered yeast increased gradually during serial subcultures on cellobiose. Finally, an evolved strain exhibited a 15-fold-higher cellobiose fermentation rate. To identify the responsible mutations in the evolved strain, genome sequencing was performed. Interestingly, no mutations affecting cellobiose fermentation were identified, but the evolved strain contained 9 copies of cdt-1 and 23 copies of gh1-1 We also traced the copy numbers of cdt-1 and gh1-1 of mixed populations during the serial subcultures. The copy numbers of cdt-1 and gh1-1 in the cultures increased gradually with similar ratios as cellobiose fermentation rates of the cultures increased. These results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step in engineered yeast and copies of genes coding for metabolic enzymes might be amplified in yeast if there is a growth advantage. This study indicates that on-demand gene amplification might be an efficient strategy for yeast metabolic engineering. IMPORTANCE: In order to enable rapid and efficient fermentation of cellulosic hydrolysates by engineered yeast, we delve into the limiting factors of cellobiose fermentation by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular ß-glucosidase (encoded by gh1-1). Through laboratory evolution, we isolated mutant strains capable of fermenting cellobiose much faster than a parental strain. Genome sequencing of the fast cellobiose-fermenting mutant reveals that there are massive amplifications of cdt-1 and gh1-1 in the yeast genome. We also found positive and quantitative relationships between the rates of cellobiose consumption and the copy numbers of cdt-1 and gh1-1 in the evolved strains. Our results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step for efficient cellobiose fermentation. We demonstrate the feasibility of optimizing not only heterologous metabolic pathways in yeast through laboratory evolution but also on-demand gene amplification in yeast, which can be broadly applicable for metabolic engineering.
Assuntos
Celobiose/metabolismo , Amplificação de Genes , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fermentação , Microbiologia Industrial , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismoRESUMO
Xylose fermentation by engineered Saccharomyces cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD+ -linked xylitol dehydrogenase (XDH) suffers from redox imbalance due to cofactor difference between XR and XDH, especially under anaerobic conditions. We have demonstrated that coupling of an NADH-dependent acetate reduction pathway with surplus NADH producing xylose metabolism enabled not only efficient xylose fermentation, but also in situ detoxification of acetate in cellulosic hydrolysate through simultaneous co-utilization of xylose and acetate. In this study, we report the highest ethanol yield from xylose (0.463 g ethanol/g xylose) by engineered yeast with XR and XDH through optimization of the acetate reduction pathway. Specifically, we constructed engineered yeast strains exhibiting various levels of the acetylating acetaldehyde dehydrogenase (AADH) and acetyl-CoA synthetase (ACS) activities. Engineered strains exhibiting higher activities of AADH and ACS consumed more acetate and produced more ethanol from a mixture of 20 g/L of glucose, 80 g/L of xylose, and 8 g/L of acetate. In addition, we performed environmental and genetic perturbations to further improve the acetate consumption. Glucose-pulse feeding to continuously provide ATPs under anaerobic conditions did not affect acetate consumption. Promoter truncation of GPD1 and gene deletion of GPD2 coding for glycerol-3-phosphate dehydrogenase to produce surplus NADH also did not lead to improved acetate consumption. When a cellulosic hydrolysate was used, the optimized yeast strain (SR8A6S3) produced 18.4% more ethanol and 41.3% less glycerol and xylitol with consumption of 4.1 g/L of acetate than a control strain without the acetate reduction pathway. These results suggest that the major limiting factor for enhanced acetate reduction during the xylose fermentation might be the low activities of AADH and ACS, and that the redox imbalance problem of XR/XDH pathway can be exploited for in situ detoxification of acetic acid in cellulosic hydrolysate and increasing ethanol productivity and yield. Biotechnol. Bioeng. 2016;113: 2587-2596. © 2016 Wiley Periodicals, Inc.
Assuntos
Acetatos/metabolismo , Aldeído Oxirredutases/metabolismo , Celulose/metabolismo , Coenzima A Ligases/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/fisiologia , Aldeído Oxirredutases/genética , Coenzima A Ligases/genética , Etanol/isolamento & purificação , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Oxirredução , Transdução de Sinais/fisiologiaRESUMO
Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step toward a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates contain high concentrations of cellobiose and xylose. Here, we constructed a recombinant Saccharomyces cerevisiae strain capable of fermenting cellobiose and xylose into lactic acid. Specifically, genes (cdt-1, gh1-1, XYL1, XYL2, XYL3, and ldhA) coding for cellobiose transporter, ß-glucosidase, xylose reductase, xylitol dehydrogenase, xylulokinase, and lactate dehydrogenase were integrated into the S. cerevisiae chromosomes. The resulting strain produced lactic acid from cellobiose or xylose with high yields. When fermenting a cellulosic sugar mixture containing 10 g/L glucose, 40 g/L xylose, and 80 g/L cellobiose, the engineered strain produced 83 g/L of lactic acid with a yield of 0.66 g lactic acid/g sugar (66% theoretical maximum). This study demonstrates initial steps toward the feasibility of sustainable production of lactic acid from lignocellulosic sugars by engineered yeast.
Assuntos
Celobiose/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Xilose/metabolismo , Reatores Biológicos/microbiologia , Celobiose/genética , Fermentação , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Plasmídeos/genética , Saccharomyces cerevisiae/metabolismo , Xilose/genéticaRESUMO
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.
Assuntos
Arginase/genética , Sistemas CRISPR-Cas , Etanol/metabolismo , Fermentação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Uretana/metabolismo , Deleção de Genes , Saccharomyces cerevisiae/metabolismoRESUMO
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/genética , Biologia Sintética , Biocombustíveis , Biomassa , Saccharomyces cerevisiae/metabolismoRESUMO
Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.
Assuntos
Álcool Desidrogenase/genética , Deleção de Genes , Ácido Láctico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Álcool Desidrogenase/metabolismo , Engenharia Genética , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase-solubility analysis suggested that Red-Br-Nos complexed with ß-CD and methyl-ß-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 10(3) M(-1) and 4.27 × 10(3) M(-1). Fourier transforms infrared spectroscopy indicated entrance of an O-CH2 or OCH3-C6H4-OCH3 moiety of Red-Br-Nos in the ß-CD or methyl-ß-CD cavity. Furthermore, the cage complex of Red-Br-Nos with ß-CD and methyl-ß-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3-C6H4-OCH3 moiety was closer to the H5 proton of ß-CD and the H3 proton of the methyl-ß-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH â¼ 7.4) was improved by â¼10.7-fold and â¼21.2-fold when mixed with ß-CD and methyl-ß-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by â¼2-fold and â¼3-fold for Red-Br-Nos-ß-CD-GGM and Red-Br-Nos-methyl-ß-CD-GGM formulations respectively, compared to free Red-Br-Nos-ß-CD and Red-Br-Nos-methyl-ß-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer.
Assuntos
Ciclodextrinas/química , Galactanos/química , Mananas/química , Microesferas , Noscapina/química , Gomas Vegetais/química , Varredura Diferencial de Calorimetria , Células HT29 , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/químicaRESUMO
The gajami-sikhae, traditional Korean cuisine fermented with flat fish, samples were collected from eight different manufacturers (GS1-GS8). We employed pyrosequencing method to analyze the bacterial communities of the gajami-sikhae samples. Family- and genus-level analyses indicated that the bacterial community compositions of GS3 and GS6 were distinct from those of the rest. The species-level structures of bacterial communities of the gajami-sikhae samples except for GS3 and GS6 featured Lactobacillus sakei as the most abundant species. Leuconostoc mesenteroides was revealed as the most dominant species among the bacterial community of GS6 and the bacterial community of GS3 was composed of various lactic acid bacteria. We employed a culture-based method to isolate beneficial strains from the gajami-sikhae samples. However, most of the 47 selected colonies were identified as Bacillus subtilis and Bacillus amyloliquefaciens. This study indicated that gajami-sikhae was mainly composed of many beneficial lactic acid bacteria.