Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 144, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494579

RESUMO

Photodynamic therapy (PDT) represents an emerging strategy to treat various malignancies, including colorectal cancer (CC), the third most common cancer type. This work presents an engineered M13 phage retargeted towards CC cells through pentavalent display of a disulfide-constrained peptide nonamer. The M13CC nanovector was conjugated with the photosensitizer Rose Bengal (RB), and the photodynamic anticancer effects of the resulting M13CC-RB bioconjugate were investigated on CC cells. We show that upon irradiation M13CC-RB is able to impair CC cell viability, and that this effect depends on i) photosensitizer concentration and ii) targeting efficiency towards CC cell lines, proving the specificity of the vector compared to unmodified M13 phage. We also demonstrate that M13CC-RB enhances generation and intracellular accumulation of reactive oxygen species (ROS) triggering CC cell death. To further investigate the anticancer potential of M13CC-RB, we performed PDT experiments on 3D CC spheroids, proving, for the first time, the ability of engineered M13 phage conjugates to deeply penetrate multicellular spheroids. Moreover, significant photodynamic effects, including spheroid disruption and cytotoxicity, were readily triggered at picomolar concentrations of the phage vector. Taken together, our results promote engineered M13 phages as promising nanovector platform for targeted photosensitization, paving the way to novel adjuvant approaches to fight CC malignancies.


Assuntos
Bacteriófagos , Neoplasias do Colo , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Morte Celular , Rosa Bengala/farmacologia , Rosa Bengala/química , Neoplasias do Colo/terapia
2.
Mar Drugs ; 21(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37233501

RESUMO

Angiogenesis and metastasis represent two challenging targets to combat cancer development in the later stages of its progression. Numerous studies have indicated the important role of natural products in blocking tumor angiogenesis signaling pathways in several advanced tumors. In recent years, the marine polysaccharides fucoidans emerged as promising anticancer compounds showing potent antitumor activity in both in vitro and in vivo models of different types of cancers. The objective of this review is to focus on the antiangiogenic and antimetastatic activities of fucoidans with special emphasis on preclinical studies. Independently from their source, fucoidans inhibit several angiogenic regulators, primarily vascular endothelial growth factor (VEGF). A glance towards fucoidans' ongoing clinical trials and pharmacokinetic profile is provided to present the main challenges that still need to be addressed for their bench-to-bedside translation.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
3.
Mar Drugs ; 21(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662211

RESUMO

Marine sponges represent one of the richest sources of natural marine compounds with anticancer potential. Plocabulin (PM060184), a polyketide originally isolated from the sponge Lithoplocamia lithistoides, elicits its main anticancer properties binding tubulin, which still represents one of the most important targets for anticancer drugs. Plocabulin showed potent antitumor activity, in both in vitro and in vivo models of different types of cancers, mediated not only by its antitubulin activity, but also by its ability to block endothelial cell migration and invasion. The objective of this review is to offer a description of plocabulin's mechanisms of action, with special emphasis on the antiangiogenic signals and the latest progress on its development as an anticancer agent.


Assuntos
Antineoplásicos , Neoplasias , Policetídeos , Poríferos , Animais , Policetídeos/farmacologia , Policetídeos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Pironas/farmacologia , Poríferos/química
4.
Nicotine Tob Res ; 23(12): 2127-2134, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34036368

RESUMO

INTRODUCTION: Recently, the Food and Drug Administration authorized the marketing of IQOS Tobacco Heating System as a Modified Risk Tobacco Product based on an electronic heat-not-burn technology that purports to reduce the risk. METHODS: Sprague-Dawley rats were exposed in a whole-body mode to IQOS aerosol for 4 weeks. We performed the chemical characterization of IQOS mainstream and we studied the ultrastructural changes in trachea and lung parenchyma of rats exposed to IQOS stick mainstream and tissue pro-inflammatory markers. We investigated the reactive oxygen species amount along with the markers of tissue and DNA oxidative damage. Moreover, we tested the putative genotoxicity of IQOS mainstream through Ames and alkaline Comet mutagenicity assays. RESULTS: Here, we identified irritating and carcinogenic compounds including aldehydes and polycyclic aromatic hydrocarbons in the IQOS mainstream as sign of incomplete combustion and degradation of tobacco, that lead to severe remodelling of smaller and largest rat airways. We demonstrated that IQOS mainstream induces lung enzymes that activate carcinogens, increases tissue reactive radical concentration; promotes oxidative DNA breaks and gene level DNA damage; and stimulates mitogen activated protein kinase pathway which is involved in the conventional tobacco smoke-induced cancer progression. CONCLUSIONS: Collectively, our findings reveal that IQOS causes grave lung damage and promotes factors that increase cancer risk. IMPLICATIONS: IQOS has been proposed as a safer alternative to conventional cigarettes, due to depressed concentration of various harmful constituents typical of traditional tobacco smoke. However, its lower health risks to consumers have yet to be determined. Our findings confirm that IQOS mainstream contains pyrolysis and thermogenic degradation by-products, the same harmful constituents of traditional cigarette smoke, and, for the first time, we show that it causes grave lung damage and promotes factors that increase cancer risk in the animal model.


Assuntos
Fumaça , Produtos do Tabaco , Animais , DNA , Pulmão , Ratos , Ratos Sprague-Dawley , Fumar , Nicotiana , Produtos do Tabaco/toxicidade
5.
Mar Drugs ; 19(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068184

RESUMO

The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.


Assuntos
Antraquinonas/farmacologia , Antraquinonas/toxicidade , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Organismos Aquáticos/química , Animais , Antraquinonas/química , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Mutagênicos/química , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Neoplasias/tratamento farmacológico
6.
Bioorg Chem ; 86: 538-549, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782572

RESUMO

Breast cancer is the most diagnosed type of cancer among women for which an exhaustive cure has not been discovered yet. Nowadays, tamoxifen still represents the gold standard for breast cancer therapy; it acts on both estrogen receptor-positive and estrogen receptor-negative breast cancers. Unfortunately, its toxicity and the related chemoresistance undermine its antitumor potential. In this paper, new tamoxifen-based derivatives with a rigid structural motif in their structure were designed, synthesized, and evaluated to assess their antitumor behavior. All the tested compounds affected estrogen receptor-positive tumor (MCF-7) cell growth, even with different extents, among which, the most active ones proved also to induce mitochondria-mediated apoptosis through activation of PARP cleavage, decrease in Bax/Bcl-2 ratio and increase in Bim gene expression levels. Here we found that the compound 1, carrying a rigid xanthene core, turned out to be the most promising of the set showing an activity profile comparable to that of tamoxifen. Furthermore, a more favorable genotoxic profile than tamoxifen made compound 1 a promising candidate for further studies.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Tamoxifeno/farmacologia , Xantenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Tamoxifeno/química , Células Tumorais Cultivadas , Xantenos/química
7.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540249

RESUMO

Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Avena/química , Neoplasias/tratamento farmacológico , ortoaminobenzoatos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
8.
Bioorg Med Chem Lett ; 28(6): 1001-1004, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29496367

RESUMO

Epigenetic modulators Histone deacetylases (HDACs) and Lysine demethylase (LSD1) are validated targets for anticancer therapy. Both HDAC1/2 and LSD1 are found in association with the repressor protein CoREST in a transcriptional co-repressor complex, which is responsible for gene silencing. Combined modulation of both targets results in a synergistic antiproliferative activity. In the present investigation, we report about the design and synthesis of a series of polyamine-based HDACs-LSD1 dual binding inhibitors obtained by coupling Vorinostat and Tranylcypromine. Compound 4 emerged as the most promising of the synthesized series, showing good inhibitory activity towards HDAC1 and LSD1 either in vitro and in cell-based assay (Ki = 42.52 ±â€¯8.94 nM and IC50 = 3.85 µM, respectively). Furthermore, at 70.0 µM compound 4 induced a more pronounced cytotoxic effect than Vorinostat (68.6% vs 56.6% of dead cells) in MCF7 cancer cell line.


Assuntos
Antineoplásicos/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Poliaminas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Células MCF-7 , Estrutura Molecular , Poliaminas/síntese química , Poliaminas/química , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 19(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021941

RESUMO

Alzheimer's disease (AD) is the most common form of dementia among older people. Although soluble amyloid species are recognized triggers of the disease, no therapeutic approach is able to stop it. 6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabia japonica, which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties. The aim of the present study was to investigate the neuroprotective activity of 6-MSITC in a murine AD model, induced by intracerebroventricular injection of ß-amyloid oligomers (Aß1-42O). The treatment with 6-MSITC started 1 h after the surgery for the next 10 days. Behavioral analysis showed that 6-MSITC ameliorated Aß1-42O-induced memory impairments. The decrease of glutathione levels and increase of reactive oxygen species in hippocampal tissues following Aß1-42O injection were reduced by 6-MSITC. Moreover, activation of caspases, increase of inflammatory factors, and phosphorylation of ERK and GSK3 were inhibited by 6-MSITC. These results highlighted an interesting neuroprotective activity of 6-MSITC, which was able to restore a physiological oxidative status, interfere positively with Nrf2-pathway, decrease apoptosis and neuroinflammation and contribute to behavioral recovery. Taken together, these findings demonstrated that 6-MSITC could be a promising complement for AD therapy.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/patologia , Inflamação/tratamento farmacológico , Isotiocianatos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Transtornos Cognitivos/complicações , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Inflamação/complicações , Inflamação/patologia , Isotiocianatos/química , Isotiocianatos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
10.
Mar Drugs ; 15(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027954

RESUMO

Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Poríferos/metabolismo , Animais , Anticarcinógenos/isolamento & purificação , Anticarcinógenos/farmacologia , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Produtos Biológicos/isolamento & purificação , Desenho de Fármacos , Humanos , Neoplasias/tratamento farmacológico , Metabolismo Secundário
11.
Drug Dev Res ; 77(8): 437-443, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27539712

RESUMO

Preclinical Research A novel and promising approach to overcome the limits of single-target therapy is represented by the multitarget approach. This strategy aims to simultaneously modulate several targets involved in the pathophysiology of a multifactorial disease, with the potential to enhance therapeutic effectiveness and improve drug safety. Although there has been a marked growth in the design of multitarget drugs (MTDs) in the last years in the context of anti-Alzheimer and anti-cancer drug discovery, a parallel expansion was not observed in antipsychotic drugs, even that for psychiatric disorders there is a cogent medical need for new treatments. The discovery of new MTDs is a challenging task and we will describe the main strategies that have been developed over the years for the design of multifunctional molecules in antipsychotic drug discovery. In particular, we will focus on the few available MTDs based on the design of selective serotonin re-uptake inhibitors, used as antidepressants and in the treatment of schizophrenia. Drug Dev Res 77 : 437-443, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Antipsicóticos/síntese química , Esquizofrenia/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Antipsicóticos/química , Antipsicóticos/uso terapêutico , Desenho de Fármacos , Humanos , Estrutura Molecular , Polifarmacologia , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
12.
Haematologica ; 98(2): 193-200, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22875622

RESUMO

Imatinib has so far been the first-choice treatment in chronic myeloid leukemia with excellent results. However, only a proportion of patients achieve major molecular response - hence the need to find biological predictors of outcome to select the optimal therapeutic strategy now that more potent inhibitors are available. We investigated a panel of 20 polymorphisms in seven genes, potentially associated with the pharmacogenetics of imatinib, in a subset of 189 patients with newly diagnosed chronic myeloid leukemia enrolled in the TOPS trial. The analysis included polymorphisms in the transporters hOCT1, MDR1, ABCG2, OCTN1, and OATP1A2, and in the metabolizing genes CYP3A4 and CYP3A5. In the overall population, the OCTN1 C allele (rs1050152), a simple combination of polymorphisms in the hOCT1 gene and another combination in the genes involved in imatinib uptake were significantly associated with major molecular response. The combination of polymorphisms in imatinib uptake was also significantly associated with complete molecular response. Analyses restricted to Caucasians highlighted the significant association of MDR1 CC (rs60023214) genotype with complete molecular response. We demonstrate the usefulness of a pharmacogenetic approach for stratifying patients with chronic myeloid leukemia according to their likelihood of achieving a major or complete molecular response to imatinib. This represents an attractive opportunity for therapy optimization, worth testing in clinical trials.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Proteínas de Transporte de Cátions/genética , Sistema Enzimático do Citocromo P-450/genética , Genótipo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adolescente , Adulto , Idoso , Alelos , Antineoplásicos/metabolismo , Benzamidas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Mesilato de Imatinib , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Piperazinas/metabolismo , Polimorfismo de Nucleotídeo Único , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Simportadores , Resultado do Tratamento , Adulto Jovem
13.
Pharmaceutics ; 15(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36986780

RESUMO

Temoporfin (mTHPC) is one of the most promising photosensitizers used in photodynamic therapy (PDT). Despite its clinical use, the lipophilic character of mTHPC still hampers the full exploitation of its potential. Low solubility in water, high tendency to aggregate, and low biocompatibility are the main limitations because they cause poor stability in physiological environments, dark toxicity, and ultimately reduce the generation of reactive oxygen species (ROS). Applying a reverse docking approach, here, we identified a number of blood transport proteins able to bind and disperse monomolecularly mTHPC, namely apohemoglobin, apomyoglobin, hemopexin, and afamin. We validated the computational results synthesizing the mTHPC-apomyoglobin complex (mTHPC@apoMb) and demonstrated that the protein monodisperses mTHPC in a physiological environment. The mTHPC@apoMb complex preserves the imaging properties of the molecule and improves its ability to produce ROS via both type I and type II mechanisms. The effectiveness of photodynamic treatment using the mTHPC@apoMb complex was then demonstrated in vitro. Blood transport proteins can be used as molecular "Trojan horses" in cancer cells by conferring mTHPC (i) water solubility, (ii) monodispersity, and (iii) biocompatibility, ultimately bypassing the current limitations of mTHPC.

14.
Cells ; 12(3)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766734

RESUMO

The combination of photodynamic therapy with chemotherapy (photochemotherapy, PCT) can lead to additive or synergistic antitumor effects. Usually, two different molecules, a photosensitizer (PS) and a chemotherapeutic drug are used in PCT. Doxorubicin is one of the most successful chemotherapy drugs. Despite its high efficacy, two factors limit its clinical use: severe side effects and the development of chemoresistance. Doxorubicin is a chromophore, able to absorb light in the visible range, making it a potential PS. Here, we exploited the intrinsic photosensitizing properties of doxorubicin to enhance its anticancer activity in leukemia, breast, and epidermoid carcinoma cells, upon irradiation. Light can selectively trigger the local generation of reactive oxygen species (ROS), following photophysical pathways. Doxorubicin showed a concentration-dependent ability to generate peroxides and singlet oxygen upon irradiation. The underlying mechanisms leading to the increase in its cytotoxic activity were intracellular ROS generation and the induction of necrotic cell death. The nuclear localization of doxorubicin represents an added value for its use as a PS. The use of doxorubicin in PCT, simultaneously acting as a chemotherapeutic agent and a PS, may allow (i) an increase in the anticancer effects of the drug, and (ii) a decrease in its dose, and thus, its dose-related adverse effects.


Assuntos
Antineoplásicos , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Doxorrubicina/farmacologia , Antineoplásicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia
15.
Pharmacogenet Genomics ; 22(3): 198-205, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22241070

RESUMO

BACKGROUND: Despite the enormous success of imatinib in chronic myeloid leukemia (CML), therapy resistance has emerged in a significant proportion of patients, partly because of the overexpression of ABC efflux transporters. METHODS: Using an array comprising 667 miRNAs, we investigated whether the expression of microRNAs (miRNAs) is altered in CML K-562 cells becoming resistant to increasing concentrations of imatinib. ABCB1 and ABCG2 mRNA (quantitative real-time PCR) and protein expression (western blot) were quantified under short-term and 4 months' imatinib treatment. Interaction of miR-212 and miR-328 with ABCG2 was investigated by transfection experiments and reporter gene assays using respective miRNA precursors or miRNA inhibitors. RESULTS: Although ABCB1 protein was not expressed, ABCG2 protein was 7.2-fold elevated after long-term treatment with 0.3 µmol/l imatinib and decreased gradually at higher concentrations. miRNAs miR-212 and miR-328 were identified to correlate inversely with ABCG2 expression under these conditions. Short-term treatment also induced ABCG2 protein concentration dependently and caused a downregulation of miR-212, but not of miR-328 at all tested concentrations (P=0.050). Reporter gene assays confirmed miR-212 to target the 3'-UTR region of ABCG2. In contrast, transfection of anti-miR-212 revealed an upregulation of ABCG2 protein expression, whereas the effect of anti-miR-328 was weak. CONCLUSION: Our study suggests an association of imatinib treatment, miRNA downregulation and ABCG2 overexpression, possibly contributing to the mechanisms involved in imatinib distribution and response in CML therapy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/administração & dosagem , Pirimidinas/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Benzamidas , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas de Neoplasias/genética
16.
Mutat Res ; 750(2): 107-131, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22178957

RESUMO

Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.


Assuntos
Isotiocianatos/toxicidade , Isotiocianatos/uso terapêutico , Antioxidantes/uso terapêutico , Quimioprevenção , Humanos , Mutagênicos/toxicidade
17.
Nanoscale ; 14(3): 632-641, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34792088

RESUMO

Photodynamic therapy (PDT) represents a promising therapeutic modality for cancer. Here we used an orthogonal nanoarchitectonics approach (genetic/chemical) to engineer M13 bacteriophages as targeted vectors for efficient photodynamic killing of cancer cells. M13 was genetically refactored to display on the phage tip a peptide (SYPIPDT) able to bind the epidermal growth factor receptor (EGFR). The refactored M13EGFR phages demonstrated EGFR-targeted tropism and were internalized by A431 cancer cells, that overexpress EGFR. Using an orthogonal approach to the genetic display, M13EGFR phages were then chemically modified, conjugating hundreds of Rose Bengal (RB) photosensitizing molecules on the capsid surface, without affecting the selective recognition of the SYPIPDT peptides. Upon internalization, the M13EGFR-RB derivatives generated intracellularly reactive oxygen species, activated by an ultralow intensity white light irradiation. The killing activity of cancer cells is observed at picomolar concentrations of the M13EGFR phage.


Assuntos
Neoplasias , Fotoquimioterapia , Bacteriófago M13/genética , Proteínas do Capsídeo/genética , Humanos , Neoplasias/tratamento farmacológico , Peptídeos
18.
Biomed Pharmacother ; 154: 113662, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36800294

RESUMO

Ferroptosis induction is an emerging strategy to treat cancer and contrast the tricky issue of chemoresistance, which can arise towards apoptosis. This work elucidates the anticancer mechanisms evoked by perillaldehyde, a monoterpenoid isolated from Ammodaucus leucotrichus Coss. & Dur. We investigated and characterized its antileukemic potential in vitro, disclosing its ability to trigger ferroptosis. Specifically, perillaldehyde induced lipid peroxidation, decreased glutathione peroxidase 4 protein expression, and depleted intracellular glutathione on HL-60 promyelocytic leukemia cells. Besides, it stimulated the active secretion of ATP, one of the most crucial events in the induction of efficient anticancer response, prompting further studies to disclose its possible nature as an immunogenic cell death inducer. To preliminarily assess the clinical relevance of perillaldehyde, we tested its ability to induce cell death on patient-derived acute myeloid leukemia biopsies, recording a similar mechanism of action and potency compared to HL-60 cells. To round the study off, we tested its selectivity towards tumor cells and disclosed lower toxicity on normal cells compared to both HL-60 and acute myeloid leukemia biopsies. Altogether, these data depict a favorable risk-benefit profile for perillaldehyde and reveal its peculiar antileukemic potential, which qualifies this natural product to proceed further through the drug development pipeline.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Linhagem Celular Tumoral , Monoterpenos/uso terapêutico , Leucemia Mieloide Aguda/metabolismo
19.
Biomolecules ; 13(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671454

RESUMO

Temoporfin (mTHPC) is approved in Europe for the photodynamic treatment of head and neck squamous cell carcinoma (HNSCC). Although it has a promising profile, its lipophilic character hampers the full exploitation of its potential due to high tendency of aggregation and a reduced ROS generation that compromise photodynamic therapy (PDT) efficacy. Moreover, for its clinical administration, mTHPC requires the presence of ethanol and propylene glycol as solvents, often causing adverse effects in the site of injection. In this paper we explored the efficiency of a new mTHPC formulation that uses human serum albumin (HSA) to disperse the photosensitizer in solution (mTHPC@HSA), investigating its anticancer potential in two HNSCC cell lines. Through a comprehensive characterization, we demonstrated that mTHPC@HSA is stable in physiological environment, does not aggregate, and is extremely efficient in PDT performance, due to its high singlet oxygen generation and the high dispersion as monomolecular form in HSA. This is supported by the computational identification of the specific binding pocket of mTHPC in HSA. Moreover, mTHPC@HSA-PDT induces cytotoxicity in both HNSCC cell lines, increasing intracellular ROS generation and the number of γ-H2AX foci, a cellular event involved in the global response to cellular stress. Taken together these results highlight the promising phototoxic profile of the complex, prompting further studies to assess its clinical potential.


Assuntos
Neoplasias de Cabeça e Pescoço , Fotoquimioterapia , Humanos , Albumina Sérica Humana , Espécies Reativas de Oxigênio , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
20.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36558942

RESUMO

Little is known about the pharmacological activity of Ammodaucus leucotrichus Coss. & Dur., a small annual species that grows in the Saharan and sub-Saharan countries. In the present study, we investigated whether the standardized ethanolic extract of A. leucotrichus fruits and R-perillaldehyde, a monoterpenoid isolated from A. leucotrichus fruits, are able to affect different processes involved in different phases of cancer development. In particular, we explored their genoprotective, proapoptotic, antiproliferative, and cytodifferentiating potential on different human cell models. We analyzed the genoprotective and proapoptotic activity on human lymphoblast cells (TK6) using the micronucleus test, and the cytodifferentiation effects on human promyelocytic cells (HL60) through the evaluation of different markers of differentiation forward granulocytes or monocytes. The results showed that the extract and perillaldehyde were able to induce apoptosis and protect from clastogen-induced DNA damage. To our best knowledge, this is the first report on the ability of A. leucotrichus and perillaldehyde to induce apoptosis and protect DNA from the toxicity of different compounds. Data reported in this work are the starting point for their pharmacological use. Going forward, efforts to determine their effects on other events associated with cancer development, such as angiogenesis and metastasization, will provide important information and improve our understanding of their potential in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA