RESUMO
BACKGROUND AND OBJECTIVE: Hearing loss is the most common sensory deficit in humans. The aim of this study was to clarify the genetic aetiology of nonsyndromic hearing loss in the Moravian-Silesian population of the Czech Republic. PATIENTS AND METHODS: This study included 200 patients (93 males, 107 females, mean age 16.9 years, ranging from 4 months to 62 years) with nonsyndromic sensorineural hearing loss. We screened all patients for mutations in GJB2 and the large deletion del(GJB6-D13S1830). We performed further screening for additional genes (SERPINB6, TMIE, COCH, ESPN, ACTG1, KCNQ4, and GJB3) with Sanger sequencing on a subset of patients that were negative for GJB2 mutations. RESULTS: We detected biallelic GJB2 mutations in 44 patients (22%). Among these patients, 63.6%, 9.1% and 2.3% exhibited homozygous c.35delG, p.Trp24*, and p.Met34Thr mutations, respectively. The remaining 25% of these patients exhibited compound heterozygous c.35delG, c.-23+1G>A, p.Trp24*, p.Val37Ile, p.Met34Thr, p.Leu90Pro, c.235delC, c.313_326del14, p.Ser139Asn, and p.Gly147Leu mutations. We found a monoallelic GJB2 mutation in 12 patients (6.6%). We found no pathogenic mutations in the other tested genes. Conclusions: One fifth of our cohort had deafness related to GJB2 mutations. The del(GJB6-D13S1830), SERPINB6, TMIE, COCH, ESPN, ACTG1, GJB3, and KCNQ4 mutations were infrequently associated with deafness in the Moravian-Silesian population. Therefore, we suggest that del(GJB6-D13S1830) testing should be performed only when patients with deafness carry the monoallelic GJB2 mutation.
Assuntos
Conexinas/genética , Surdez/genética , Perda Auditiva Neurossensorial/genética , Mutação/genética , Actinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Conexina 26 , República Tcheca , Análise Mutacional de DNA/métodos , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Lactente , Canais de Potássio KCNQ/genética , Masculino , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Pessoa de Meia-Idade , Serpinas/genética , Adulto JovemRESUMO
OBJECTIVE: This study aimed to clarify the molecular epidemiology of hearing loss by identifying the responsible genes in patients without GJB2 mutations. STUDY DESIGN: Prospective genetic study. SETTING: Tertiary referral hospital. PATIENTS: Fifty one patients with bilateral sensorineural hearing loss, 20 men, and 31 women, mean age 24.9 years, range 3 to 64 years, from 49 families. GJB2 and deltaGJB6-D13S1830 mutations were excluded previously. INTERVENTION: Diagnostic. Sixty-nine genes reported to be causative of hearing loss were analyzed. Sequence capture technology, next-generation sequencing, and multiplex ligation-dependent probe amplification (MLPA) were used. Coverage of STRC was screened in Integrative Genomics Viewer software. MAIN OUTCOME MEASURE: Identification of causal pathogenic mutations in genes related to deafness. RESULTS: Five families (10%) had recessive STRC deletions or mutations. Five unrelated patients (10%) had recessive mutations in TMPRSS3, USH2A, PCDH15, LOXHD1, and MYO15A. Three families (6%) had autosomal dominant mutations in MYO6A, KCNQ4, and SIX1. One family (2%) had an X-linked POU3F4 mutation. Thus, we identified the cause of hearing loss in 28% of the families studied. CONCLUSIONS: Following GJB2, STRC was the second most frequently mutated gene in patients from the Czech Republic with hearing loss. To decrease the cost of testing, we recommend STRC deletion screening with MLPA before next-generation sequencing. The existence of a pseudogene and polymorphic STRC regions can lead to false-positive or false-negative results when copy number variation analysis is based on next-generation sequencing data.