Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genes Dev ; 31(15): 1561-1572, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882853

RESUMO

Autophagy is a ubiquitous catabolic process that causes cellular bulk degradation of cytoplasmic components and is generally associated with positive effects on health and longevity. Inactivation of autophagy has been linked with detrimental effects on cells and organisms. The antagonistic pleiotropy theory postulates that some fitness-promoting genes during youth are harmful during aging. On this basis, we examined genes mediating post-reproductive longevity using an RNAi screen. From this screen, we identified 30 novel regulators of post-reproductive longevity, including pha-4 Through downstream analysis of pha-4, we identified that the inactivation of genes governing the early stages of autophagy up until the stage of vesicle nucleation, such as bec-1, strongly extend both life span and health span. Furthermore, our data demonstrate that the improvements in health and longevity are mediated through the neurons, resulting in reduced neurodegeneration and sarcopenia. We propose that autophagy switches from advantageous to harmful in the context of an age-associated dysfunction.


Assuntos
Autofagia/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Citoplasma/metabolismo , Longevidade , Neurônios/metabolismo , Envelhecimento/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Inativação Gênica/fisiologia , Pleiotropia Genética , Interferência de RNA/fisiologia , Reprodução , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Nucleic Acids Res ; 49(4): e22, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33290523

RESUMO

Multiple gene activities control complex biological processes such as cell fate specification during development and cellular reprogramming. Investigating the manifold gene functions in biological systems requires also simultaneous depletion of two or more gene activities. RNA interference-mediated knockdown (RNAi) is commonly used in Caenorhabditis elegans to assess essential genes, which otherwise lead to lethality or developmental arrest upon full knockout. RNAi application is straightforward by feeding worms with RNAi plasmid-containing bacteria. However, the general approach of mixing bacterial RNAi clones to deplete two genes simultaneously often yields poor results. To address this issue, we developed a bacterial conjugation-mediated double RNAi technique 'CONJUDOR'. It allows combining RNAi bacteria for robust double RNAi with high-throughput. To demonstrate the power of CONJUDOR for large scale double RNAi screens we conjugated RNAi against the histone chaperone gene lin-53 with more than 700 other chromatin factor genes. Thereby, we identified the Set1/MLL methyltransferase complex member RBBP-5 as a novel germ cell reprogramming barrier. Our findings demonstrate that CONJUDOR increases efficiency and versatility of RNAi screens to examine interconnected biological processes in C. elegans with high-throughput.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Reprogramação Celular/genética , Interferência de RNA , Animais , Bactérias/genética , Conjugação Genética , Epigênese Genética , Células Germinativas/metabolismo , Proteínas Luminescentes/genética , Músculos/metabolismo , Neurônios/metabolismo , Plasmídeos/genética , Proteínas Repressoras/genética
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769095

RESUMO

Critical illness myopathy (CIM) is an acquired, devastating, multifactorial muscle-wasting disease with incomplete recovery. The impact on hospital costs and permanent loss of quality of life is enormous. Incomplete recovery might imply that the function of muscle stem cells (MuSC) is impaired. We tested whether epigenetic alterations could be in part responsible. We characterized human muscle stem cells (MuSC) isolated from early CIM and analyzed epigenetic alterations (CIM n = 15, controls n = 21) by RNA-Seq, immunofluorescence, analysis of DNA repair, and ATAC-Seq. CIM-MuSC were transplanted into immunodeficient NOG mice to assess their regenerative potential. CIM-MuSC exhibited significant growth deficits, reduced ability to differentiate into myotubes, and impaired DNA repair. The chromatin structure was damaged, as characterized by alterations in mRNA of histone 1, depletion or dislocation of core proteins of nucleosome remodeling and deacetylase complex, and loosening of multiple nucleosome-spanning sites. Functionally, CIM-MuSC had a defect in building new muscle fibers. Further, MuSC obtained from the electrically stimulated muscle of CIM patients was very similar to control MuSC, indicating the impact of muscle contraction in the onset of CIM. CIM not only affects working skeletal muscle but has a lasting and severe epigenetic impact on MuSC.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Doenças Musculares , Humanos , Animais , Camundongos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Estado Terminal , Qualidade de Vida , Doenças Musculares/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco
4.
Genes Dev ; 28(1): 34-43, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24361693

RESUMO

Left/right asymmetric features of animals are either randomly distributed on either the left or right side within a population ("antisymmetries") or found stereotypically on one particular side of an animal ("directional asymmetries"). Both types of asymmetries can be found in nervous systems, but whether the regulatory programs that establish these asymmetries share any mechanistic features is not known. We describe here an unprecedented molecular link between these two types of asymmetries in Caenorhabditis elegans. The zinc finger transcription factor die-1 is expressed in a directionally asymmetric manner in the gustatory neuron pair ASE left (ASEL) and ASE right (ASER), while it is expressed in an antisymmetric manner in the olfactory neuron pair AWC left (AWCL) and AWC right (AWCR). Asymmetric die-1 expression is controlled in a fundamentally distinct manner in these two neuron pairs. Importantly, asymmetric die-1 expression controls the directionally asymmetric expression of gustatory receptor proteins in the ASE neurons and the antisymmetric expression of olfactory receptor proteins in the AWC neurons. These asymmetries serve to increase the ability of the animal to discriminate distinct chemosensory inputs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neurônios/citologia , Neurônios/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética
5.
Nucleic Acids Res ; 47(11): 5735-5745, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31114922

RESUMO

High-occupancy target (HOT) regions are segments of the genome with unusually high number of transcription factor binding sites. These regions are observed in multiple species and thought to have biological importance due to high transcription factor occupancy. Furthermore, they coincide with house-keeping gene promoters and consequently associated genes are stably expressed across multiple cell types. Despite these features, HOT regions are solely defined using ChIP-seq experiments and shown to lack canonical motifs for transcription factors that are thought to be bound there. Although, ChIP-seq experiments are the golden standard for finding genome-wide binding sites of a protein, they are not noise free. Here, we show that HOT regions are likely to be ChIP-seq artifacts and they are similar to previously proposed 'hyper-ChIPable' regions. Using ChIP-seq data sets for knocked-out transcription factors, we demonstrate presence of false positive signals on HOT regions. We observe sequence characteristics and genomic features that are discriminatory of HOT regions, such as GC/CpG-rich k-mers, enrichment of RNA-DNA hybrids (R-loops) and DNA tertiary structures (G-quadruplex DNA). The artificial ChIP-seq enrichment on HOT regions could be associated to these discriminatory features. Furthermore, we propose strategies to deal with such artifacts for the future ChIP-seq studies.


Assuntos
Sítios de Ligação , Imunoprecipitação da Cromatina/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/química , Motivos de Aminoácidos , Animais , Artefatos , Caenorhabditis elegans , DNA/química , Drosophila melanogaster , Reações Falso-Positivas , Quadruplex G , Genoma , Genoma Humano , Genômica , Humanos , Camundongos , Ligação Proteica , Domínios Proteicos , RNA/química , Análise de Sequência de DNA
6.
BMC Biol ; 14: 66, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506200

RESUMO

BACKGROUND: Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. RESULTS: We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. CONCLUSIONS: The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.


Assuntos
Proteínas de Caenorhabditis elegans/isolamento & purificação , Caenorhabditis elegans/metabolismo , Guanilato Quinases/metabolismo , Especificidade de Órgãos , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Animais , Biotinilação , Proteínas de Caenorhabditis elegans/metabolismo , Imunofluorescência , Complexos Multiproteicos/isolamento & purificação , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Reprodutibilidade dos Testes
7.
Development ; 137(11): 1799-805, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20431118

RESUMO

Transcriptional co-repressors of the Groucho/TLE family are important regulators of development in many species. A subset of Groucho/TLE family members that lack the C-terminal WD40 domains have been proposed to act as dominant-negative regulators of Groucho/TLE proteins, yet such a role has not been conclusively proven. Through a mutant screen for genes controlling a left/right asymmetric cell fate decision in the nervous system of the nematode C. elegans, we have retrieved loss-of-function alleles in two distinct loci that display identical phenotypes in neuronal fate specification and in other developmental contexts. Using the novel technology of whole-genome sequencing, we find that these loci encode the C. elegans ortholog of Groucho, UNC-37, and, surprisingly, a short Groucho-like protein, LSY-22, that is similar to truncated Groucho proteins in other species. Besides their phenotypic similarities, unc-37 and lsy-22 show genetic interactions and UNC-37 and LSY-22 proteins also physically bind to each other in vivo. Our findings suggest that rather than acting as negative regulators of Groucho, small Groucho-like proteins may promote Groucho function. We propose that Groucho-mediated gene regulatory events involve heteromeric complexes of distinct Groucho-like proteins.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Neurogênese/genética , Neurogênese/fisiologia , Proteínas Repressoras/química , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Técnicas do Sistema de Duplo-Híbrido
8.
J Dev Biol ; 11(3)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754839

RESUMO

Generating specialized cell types via cellular transcription factor (TF)-mediated reprogramming has gained high interest in regenerative medicine due to its therapeutic potential to repair tissues and organs damaged by diseases or trauma. Organ dysfunction or improper tissue functioning might be restored by producing functional cells via direct reprogramming, also known as transdifferentiation. Regeneration by converting the identity of available cells in vivo to the desired cell fate could be a strategy for future cell replacement therapies. However, the generation of specific cell types via reprogramming is often restricted due to cell fate-safeguarding mechanisms that limit or even block the reprogramming of the starting cell type. Nevertheless, efficient reprogramming to generate homogeneous cell populations with the required cell type's proper molecular and functional identity is critical. Incomplete reprogramming will lack therapeutic potential and can be detrimental as partially reprogrammed cells may acquire undesired properties and develop into tumors. Identifying and evaluating molecular barriers will improve reprogramming efficiency to reliably establish the target cell identity. In this review, we summarize how using the nematode C. elegans as an in vivo model organism identified molecular barriers of TF-mediated reprogramming. Notably, many identified molecular factors have a high degree of conservation and were subsequently shown to block TF-induced reprogramming of mammalian cells.

9.
Development ; 136(17): 2933-44, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19641012

RESUMO

An understanding of the molecular mechanisms of cell fate determination in the nervous system requires the elucidation of transcriptional regulatory programs that ultimately control neuron-type-specific gene expression profiles. We show here that the C. elegans Tailless/TLX-type, orphan nuclear receptor NHR-67 acts at several distinct steps to determine the identity and subsequent left/right (L/R) asymmetric subtype diversification of a class of gustatory neurons, the ASE neurons. nhr-67 controls several broad aspects of sensory neuron development and, in addition, triggers the expression of a sensory neuron-type-specific selector gene, che-1, which encodes a zinc-finger transcription factor. Subsequent to its induction of overall ASE fate, nhr-67 diversifies the fate of the two ASE neurons ASEL and ASER across the L/R axis by promoting ASER and inhibiting ASEL fate. This function is achieved through direct expression activation by nhr-67 of the Nkx6-type homeobox gene cog-1, an inducer of ASER fate, that is inhibited in ASEL through the miRNA lsy-6. Besides controlling bilateral and asymmetric aspects of ASE development, nhr-67 is also required for many other neurons of diverse lineage history and function to appropriately differentiate, illustrating the broad and diverse use of this type of transcription factor in neuronal development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Padronização Corporal/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Linhagem da Célula , Redes Reguladoras de Genes , Genes Reporter , Humanos , Dados de Sequência Molecular , Neurogênese/fisiologia , Neurônios/classificação , Neurônios/citologia , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
RNA ; 16(2): 349-63, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20040592

RESUMO

3' Untranslated region (UTR)-dependent post-transcriptional regulation has emerged as a critical mechanism of controlling gene expression in various physiological contexts, including cellular differentiation events. Here, we examine the regulation of the 3'UTR of the die-1 transcription factor in a single neuron of the nematode C. elegans. This 3'UTR shows the intriguing feature of being differentially regulated across the animal's left/right axis. In the left gustatory neuron, ASEL, in which DIE-1 protein is normally expressed in adult animals, the 3'UTR confers no regulatory information, while in the right gustatory neuron, ASER, where DIE-1 is normally not expressed, this 3'UTR confers negative regulatory information. Here, we systematically analyze the cis-regulatory architecture of the die-1 3'UTR using a transgenic, in vivo assay system. Through extensive mutagenesis and sequence insertions into heterologous 3'UTR contexts, we describe three 25-base-pair (bp) sequence elements that are both required and sufficient to mediate the ASER-specific down-regulation of the die-1 3'UTR. These three 25-bp sequence elements operate in both a redundant and combinatorial manner. Moreover, there are not only redundant elements within the die-1 3'UTR regulating its left/right asymmetric activity but asymmetric 3'UTR regulation is itself redundant with other regulatory mechanisms to achieve asymmetric DIE-1 protein expression and function in ASEL versus ASER. The features of 3'UTR regulation we describe here may apply to some of the vast number of genes in animal genomes whose expression is predicted to be regulated through their 3'UTR.


Assuntos
Regiões 3' não Traduzidas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA de Helmintos/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Caenorhabditis/citologia , Caenorhabditis/genética , Caenorhabditis/metabolismo , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Genes de Helmintos , Teste de Complementação Genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Elementos Reguladores de Transcrição , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Fatores de Transcrição/genética
11.
Biotechniques ; 72(5): 175-184, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297663

RESUMO

Studying protein interactions in vivo can reveal key molecular mechanisms of biological processes. Co-immunoprecipitation with mass spectrometry detects protein-protein interactions with high throughput. The nematode Caenorhabditis elegans is a powerful genetic model organism for in vivo studies. Yet its rigid and complex tissues require optimization for biochemistry applications to ensure reproducibility. The authors optimized co-immunoprecipitation with mass spectrometry by combining a native co-immunoprecipitation procedure with single-pot, solid-phase enhanced sample preparation. The authors' results for the highly conserved chromatin regulator FACT subunits HMG-3 and HMG-4 demonstrated that single-pot, solid-phase enhanced sample preparation-integrated co-immunoprecipitation with mass spectrometry procedures for C. elegans samples are highly robust. Moreover, in an accompanying study about the chromodomain factor MRG-1 (MRG15 in humans), the authors demonstrated remarkably high reproducibility for ten replicate experiments.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Imunoprecipitação , Espectrometria de Massas , Reprodutibilidade dos Testes
12.
Biotechniques ; 73(1): 5-17, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35698829

RESUMO

Epigenetic mechanisms control chromatin accessibility and gene expression to ensure proper cell fate specification. Histone proteins are integral chromatin components, and their modification promotes gene expression regulation. Specific proteins recognize modified histones such as the chromodomain protein MRG-1. MRG-1 is the Caenorhabditis elegans ortholog of mammalian MRG15, which is involved in DNA repair. MRG-1 binds methylated histone H3 and is important for germline maturation and safeguarding. To elucidate interacting proteins that modulate MRG-1 activity, we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass spectrometry. We detected strong association with the Small ubiquitin-like modifier SUMO, and found that MRG-1 is post-translationally modified by SUMO. SUMOylation affects chromatin-binding dynamics of MRG-1, suggesting an epigenetic regulation pathway, which may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Sumoilação
13.
Front Neurosci ; 15: 771687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924939

RESUMO

Cell fate conversion by the forced overexpression of transcription factors (TFs) is a process known as reprogramming. It leads to de-differentiation or trans-differentiation of mature cells, which could then be used for regenerative medicine applications to replenish patients suffering from, e.g., neurodegenerative diseases, with healthy neurons. However, TF-induced reprogramming is often restricted due to cell fate safeguarding mechanisms, which require a better understanding to increase reprogramming efficiency and achieve higher fidelity. The germline of the nematode Caenorhabditis elegans has been a powerful model to investigate the impediments of generating neurons from germ cells by reprogramming. A number of conserved factors have been identified that act as a barrier for TF-induced direct reprogramming of germ cells to neurons. In this review, we will first summarize our current knowledge regarding cell fate safeguarding mechanisms in the germline. Then, we will focus on the molecular mechanisms underlying neuronal induction from germ cells upon TF-mediated reprogramming. We will shortly discuss the specific characteristics that might make germ cells especially fit to change cellular fate and become neurons. For future perspectives, we will look at the potential of C. elegans research in advancing our knowledge of the mechanisms that regulate cellular identity, and what implications this has for therapeutic approaches such as regenerative medicine.

14.
MicroPubl Biol ; 20212021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34017942

RESUMO

We recently identified FAcilitates Chromatin Transcription (FACT) as a reprogramming barrier of transcription factor (TF) mediated conversion of germ cells into neurons in C. elegans. FACT is a conserved heterodimer consisting of SPT16 and SSRP1 in mammals. Duplication events during evolution in C. elegans generated two SSRP1 homologs named HMG-3 and HMG-4, while SPT-16 is the only homolog of SPT16. Yet, the pseudogene F55A3.7 has nearly complete nucleotide sequence homology to the spt-16 gene. However, F55A3.7 lacks some spt-16 exons and DNA pieces so we named it sspt-16 (short spt-16). Surprisingly, the deletion mutant ok1829, which affects only the sspt-16 pseudogene, shows similar germ cell reprogramming effects as described previously for FACT-depleted animals. We examined whether lack of sspt-16 affects other genes or chromatin accessibility, which may explain the permissiveness for germ cell reprogramming.

15.
J Dev Biol ; 8(4)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036439

RESUMO

The potential of a cell to produce all types of differentiated cells in an organism is termed totipotency. Totipotency is an essential property of germ cells, which constitute the germline and pass on the parental genetic material to the progeny. The potential of germ cells to give rise to a whole organism has been the subject of intense research for decades and remains important in order to better understand the molecular mechanisms underlying totipotency. A better understanding of the principles of totipotency in germ cells could also help to generate this potential in somatic cell lineages. Strategies such as transcription factor-mediated reprogramming of differentiated cells to stem cell-like states could benefit from this knowledge. Ensuring pluripotency or even totipotency of reprogrammed stem cells are critical improvements for future regenerative medicine applications. The C. elegans germline provides a unique possibility to study molecular mechanisms that maintain totipotency and the germ cell fate with its unique property of giving rise to meiotic cells Studies that focused on these aspects led to the identification of prominent chromatin-repressing factors such as the C. elegans members of the Polycomb Repressive Complex 2 (PRC2). In this review, we summarize different factors that were recently identified, which use molecular mechanisms such as control of protein translation or chromatin repression to ensure maintenance of totipotency and the germline fate. Additionally, we focus on recently identified factors involved in preventing transcription-factor-mediated conversion of germ cells to somatic lineages. These so-called reprogramming barriers have been shown in some instances to be conserved with regard to their function as a cell fate safeguarding factor in mammals. Overall, continued studies assessing the different aspects of molecular pathways involved in maintaining the germ cell fate in C. elegans may provide more insight into cell fate safeguarding mechanisms also in other species.

16.
Curr Opin Cell Biol ; 61: 9-15, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31323468

RESUMO

Reprogramming has the potential to provide specific cell types for regenerative medicine applications aiming at replacing tissues that have been lost or damaged due to degenerative diseases and injury. In this review we discuss the latest strategies and advances of in vivo reprogramming to convert cell identities in living organisms, including reprogramming induced by transcription factors (TFs) and CRISPR/dCas9 synthetic TFs, as well as by cell fusion and small molecules. We also provide a brief recap of reprogramming barriers, the effect of senescence on reprogramming efficiency, and strategies to deliver reprogramming factors in vivo. Because of the limited space, we omit dwelling on naturally occurring reprogramming phenomena such as developmentally programmed transdifferentiation found in the nematode Caenorhabditis elegans.


Assuntos
Reprogramação Celular , Animais , Transdiferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Organogênese , Fatores de Transcrição/metabolismo
17.
Aging Cell ; 18(6): e13012, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31397537

RESUMO

Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN-53 (RBBP4/7) associates with different chromatin-regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN-53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN-53 die early because LIN-53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin-53 and sin-3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin-53 and sin-3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN-53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN-53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Senescência Celular , Longevidade , Músculos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Senescência Celular/genética , Longevidade/genética , Proteínas Repressoras/genética
18.
Genetics ; 211(1): 121-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30425042

RESUMO

Chromatin regulators play important roles in the safeguarding of cell identities by opposing the induction of ectopic cell fates and, thereby, preventing forced conversion of cell identities by reprogramming approaches. Our knowledge of chromatin regulators acting as reprogramming barriers in living organisms needs improvement as most studies use tissue culture. We used Caenorhabditis elegans as an in vivo gene discovery model and automated solid-phase RNA interference screening, by which we identified 10 chromatin-regulating factors that protect cells against ectopic fate induction. Specifically, the chromodomain protein MRG-1 safeguards germ cells against conversion into neurons. MRG-1 is the ortholog of mammalian MRG15 (MORF-related gene on chromosome 15) and is required during germline development in C. elegans However, MRG-1's function as a barrier for germ cell reprogramming has not been revealed previously. Here, we further provide protein-protein and genome interactions of MRG-1 to characterize its molecular functions. Conserved chromatin regulators may have similar functions in higher organisms, and therefore, understanding cell fate protection in C. elegans may also help to facilitate reprogramming of human cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Reprogramação Celular , Neurônios/citologia , Células-Tronco/citologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurogênese , Neurônios/metabolismo , Mapas de Interação de Proteínas , Células-Tronco/metabolismo
19.
Curr Opin Syst Biol ; 11: 18-23, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386832

RESUMO

The direct conversion of one differentiated cell fate into another identity is a process known as Transdifferentiation. During Transdifferentiation, cells pass through intermediate states that are not well understood. Given the potential application of transdifferentiation in regenerative medicine and disease modeling, a better understanding of intermediate states is crucial to avoid uncontrolled conversion or proliferation, which pose a risk for patients. Researchers have begun to analyze the transcriptomes of donor, converting and target cells of Transdifferentiation with single cell resolution to compare transitional states to those found along the path of development. Here, we review examples of Transdifferentiation in a range of model systems and organisms. We propose that cells pass either through a mixed, unspecific intermediate or progenitor-like state during Transdifferentiation, which, to varying degrees, resemble states seen during development.

20.
J Vis Exp ; (131)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364230

RESUMO

Studying the cell biological processes during converting the identities of specific cell types provides important insights into mechanism that maintain and protect cellular identities. The conversion of germ cells into specific neurons in the nematode Caenorhabditis elegans (C. elegans) is a powerful tool for performing genetic screens in order to dissect regulatory pathways that safeguard established cell identities. Reprogramming of germ cells to a specific type of neurons termed ASE requires transgenic animals that allow broad over-expression of the Zn-finger transcription factor (TF) CHE-1. Endogenous CHE-1 is expressed exclusively in two head neurons and is required to specify the glutamatergic ASE neurons fate, which can easily be visualized by the gcy-5prom::gfp reporter. A trans gene containing the heat-shock promoter-driven che-1 gene expression construct allows broad mis-expression of CHE-1 in the entire animal upon heat-shock treatment. The combination of RNAi against the chromatin-regulating factor LIN-53 and heat-shock-induced che-1 over-expression leads to reprogramming of germ cell into ASE neuron-like cells. We describe here the specific RNAi procedure and appropriate conditions for heat-shock treatment of transgenic animals in order to successfully induce germ cell to neuron conversion.


Assuntos
Células Germinativas/citologia , Neurônios/citologia , Interferência de RNA/fisiologia , Fatores de Transcrição/biossíntese , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Células Germinativas/metabolismo , Resposta ao Choque Térmico , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA