Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Immunol ; 23(1): 40-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937928

RESUMO

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Assuntos
Anticorpos Antivirais/imunologia , Coronavirus Humano 229E/imunologia , Coronavirus Humano OC43/imunologia , Proteção Cruzada/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Imunidade Adaptativa/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Criança , Pré-Escolar , Reações Cruzadas/imunologia , Humanos
2.
Age Ageing ; 52(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595069

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused severe disease in unvaccinated long-term care facility (LTCF) residents. Initial booster vaccination following primary vaccination is known to provide strong short-term protection, but data are limited on duration of protection and the protective effect of further booster vaccinations. OBJECTIVE: To evaluate the effectiveness of third, fourth and fifth dose booster vaccination against SARS-CoV-2 related mortality amongst older residents of LTCFs. DESIGN: Prospective cohort study. SETTING: LTCFs for older people in England participating in the VIVALDI study. METHODS: Residents aged >65 years at participating LTCFs were eligible for inclusion if they had at least one polymerase chain reaction or lateral flow device result within the analysis period 1 January 2022 to 31 December 2022. We excluded individuals who had not received at least two vaccine doses before the analysis period. Cox regression was used to estimate relative hazards of SARS-CoV-2 related mortality following 1-3 booster vaccinations compared with primary vaccination, stratified by previous SARS-CoV-2 infection and adjusting for age, sex and LTCF size (total beds). RESULTS: A total of 13,407 residents were included. Our results indicate that third, fourth and fifth dose booster vaccination provide additional short-term protection against SARS-CoV-2 related mortality relative to primary vaccination, with consistent stabilisation beyond 112 days to 45-75% reduction in risk relative to primary vaccination. CONCLUSIONS: Successive booster vaccination doses provide additional short-term protection against SARS-CoV-2 related mortality amongst older LTCF residents. However, we did not find evidence of a longer-term reduction in risk beyond that provided by initial booster vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Idoso , Humanos , COVID-19/mortalidade , COVID-19/prevenção & controle , Assistência de Longa Duração , Estudos Prospectivos , Instituições de Cuidados Especializados de Enfermagem , Vacinas contra COVID-19/administração & dosagem , Eficácia de Vacinas , Inglaterra/epidemiologia
3.
J Infect Dis ; 226(11): 1877-1881, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35429382

RESUMO

General population studies have shown strong humoral response following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination with subsequent waning of anti-spike antibody levels. Vaccine-induced immune responses are often attenuated in frail and older populations, but published data are scarce. We measured SARS-CoV-2 anti-spike antibody levels in long-term care facility residents and staff following a second vaccination dose with Oxford-AstraZeneca or Pfizer-BioNTech. Vaccination elicited robust antibody responses in older residents, suggesting comparable levels of vaccine-induced immunity to that in the general population. Antibody levels are higher after Pfizer-BioNTech vaccination but fall more rapidly compared to Oxford-AstraZeneca recipients and are enhanced by prior infection in both groups.


Assuntos
COVID-19 , Vacinas , Humanos , Idoso , SARS-CoV-2 , ChAdOx1 nCoV-19 , Vacina BNT162 , Assistência de Longa Duração , COVID-19/prevenção & controle , Anticorpos Antivirais , Inglaterra
4.
Euro Surveill ; 26(46)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34794537

RESUMO

We describe the impact of changing epidemiology and vaccine introduction on characteristics of COVID-19 outbreaks in 330 long-term care facilities (LTCF) in England between November 2020 and June 2021. As vaccine coverage in LTCF increased and national incidence declined, the total number of outbreaks and outbreak severity decreased across the LTCF. The number of infected cases per outbreak decreased by 80.6%, while the proportion of outbreaks affecting staff only increased. Our study supports findings of vaccine effectiveness in LTCF.


Assuntos
COVID-19 , Vacinas , Surtos de Doenças/prevenção & controle , Humanos , Assistência de Longa Duração , SARS-CoV-2
5.
Wellcome Open Res ; 9: 45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818129

RESUMO

Background: We have previously demonstrated that older residents of long-term care facilities (LTCF) in the UK show levels of anti-spike antibodies that are comparable to the general population following primary series and booster vaccination for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, data on the humoral response to other SARS-CoV-2 proteins associated with natural infection are scarce in this vulnerable population. Methods: We measured quantitative levels of anti-nucleocapsid antibodies in blood samples taken from LTCF residents and staff after initial and repeat SARS-CoV-2 infections, between December 2020 and March 2023. Data on SARS-CoV-2 infection and vaccination were obtained through linkage to national datasets. Linear mixed effects models were used to investigate anti-nucleocapsid antibody levels, using log10 scale, in relation to time from most recent infection. This included evaluation of associations between repeat infection, staff/resident status, age, sex, Omicron infection and vaccination history and peak antibody level and slope of decline with time. Results: We analysed 405 antibody observations from 220 residents and 396 observations from 215 staff. Repeat infection was associated with 8.5-fold (95%CI 4.9-14.8-fold) higher initial (peak) median anti-nucleocapsid antibody level, with steeper subsequent slope of decline. There were no significant differences in antibody level associated with resident (vs. staff) status or age, but Omicron infection was associated with 3.6-fold (95%CI 2.4-5.4-fold) higher levels. There was stronger evidence of waning of antibody levels over time in a sensitivity analysis in which observations were censored in cases with suspected undetected repeat infection. Conclusions: We found similar levels of anti-nucleocapsid antibody in residents and staff of LTCFs. Repeat infection and infection with an Omicron strain were associated with higher peak values. There was evidence of waning of anti-nucleocapsid antibody levels over time.


COVID-19 had a severe impact on care homes in the UK early in the pandemic. However, deaths and disease caused by the SARS-CoV-2 virus have decreased over time following successful introduction of vaccinations and resistance linked to prior infection. There has been a lot of research carried out on the body's immune response to the viral spike protein, which was used to create vaccines against the virus. Less is known about our immune response to other proteins produced by the virus, such as nucleocapsid, which have not been used in current vaccines. We evaluated antibody levels against the viral nucleocapsid protein in older care home residents following initial and repeat SARS-CoV-2 infection and compared these values to those observed in younger care home staff. This was done through a large established cohort study, in which residents and staff of participating homes could volunteer to provide blood samples for analysis. We found similar levels of antibody levels among staff and older residents of care homes. These findings are in line with previous studies, in which we have shown that care home residents who survive SARS-CoV-2 infection can develop robust immunity. Higher peak antibody levels were observed following repeat infection in both residents and staff.

6.
Open Forum Infect Dis ; 10(1): ofac694, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36713473

RESUMO

Background: Successive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have caused severe disease in long-term care facility (LTCF) residents. Primary vaccination provides strong short-term protection, but data are limited on duration of protection following booster vaccines, particularly against the Omicron variant. We investigated the effectiveness of booster vaccination against infections, hospitalizations, and deaths among LTCF residents and staff in England. Methods: We included residents and staff of LTCFs within the VIVALDI study (ISRCTN 14447421) who underwent routine, asymptomatic testing (December 12, 2021-March 31, 2022). Cox regression was used to estimate relative hazards of SARS-CoV-2 infection, and associated hospitalization and death at 0-13, 14-48, 49-83, 84-111, 112-139, and 140+ days after dose 3 of SARS-CoV-2 vaccination compared with 2 doses (after 84+ days), stratified by previous SARS-CoV-2 infection and adjusting for age, sex, LTCF capacity, and local SARS-CoV-2 incidence. Results: A total of 14 175 residents and 19 793 staff were included. In residents without prior SARS-CoV-2 infection, infection risk was reduced 0-111 days after the first booster, but no protection was apparent after 112 days. Additional protection following booster vaccination waned but was still present at 140+ days for COVID-associated hospitalization (adjusted hazard ratio [aHR], 0.20; 95% CI, 0.06-0.63) and death (aHR, 0.50; 95% CI, 0.20-1.27). Most residents (64.4%) had received primary course vaccine of AstraZeneca, but this did not impact pre- or postbooster risk. Staff showed a similar pattern of waning booster effectiveness against infection, with few hospitalizations and no deaths. Conclusions: Our findings suggest that booster vaccination provided sustained protection against severe outcomes following infection with the Omicron variant, but no protection against infection from 4 months onwards. Ongoing surveillance for SARS-CoV-2 in LTCFs is crucial.

7.
J Infect ; 87(5): 403-412, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660754

RESUMO

Repeated coronavirus infections in childhood drive progressive maturation of systemic immune responses into adulthood. Analyses of immune responses in children have focused primarily upon systemic assessment but the importance of mucosal immunity is increasingly recognised. We studied virus-specific antibody responses in contemporaneous nasal swabs and blood samples from 99 children (4-15 years) and 28 adults (22-56 years), all of whom had prior SARS-CoV-2 infection. Whilst mucosal IgA titres against Influenza and Respiratory Syncytial virus were comparable between children and adults, those against all coronaviruses, including SARS-CoV-2, were lower in children. Mucosal IgA antibodies demonstrated comparable relative neutralisation capacity in both groups and retained activity against recent omicron variants such as XBB.1 which are highly evasive of IgG neutralisation. SARS-CoV-2 reinfection preferentially enhanced mucosal IgA responses whilst the impact of vaccination was more modest. Nasal IgA levels against coronaviruses thus display a pattern of incremental response to reinfection which likely determines the natural history of reinfection. This highlights the particular significance of developing mucosal vaccines against coronaviruses in children.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Humanos , Reinfecção , Estações do Ano , Mucosa Nasal , Imunoglobulina A , Anticorpos Antivirais
8.
Nat Aging ; 3(1): 93-104, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118525

RESUMO

Third-dose coronavirus disease 2019 vaccines are being deployed widely but their efficacy has not been assessed adequately in vulnerable older people who exhibit suboptimal responses after primary vaccination series. This observational study, which was carried out by the VIVALDI study based in England, looked at spike-specific immune responses in 341 staff and residents in long-term care facilities who received an mRNA vaccine following dual primary series vaccination with BNT162b2 or ChAdOx1. Third-dose vaccination strongly increased antibody responses with preferential relative enhancement in older people and was required to elicit neutralization of Omicron. Cellular immune responses were also enhanced with strong cross-reactive recognition of Omicron. However, antibody titers fell 21-78% within 100 d after vaccine and 27% of participants developed a breakthrough Omicron infection. These findings reveal strong immunogenicity of a third vaccine in one of the most vulnerable population groups and endorse an approach for widespread delivery across this population. Ongoing assessment will be required to determine the stability of immune protection.


Assuntos
COVID-19 , Vacinas , Humanos , Idoso , Vacina BNT162 , COVID-19/prevenção & controle , Anticorpos , Vacinas contra COVID-19 , Infecções Irruptivas
9.
Lancet Healthy Longev ; 3(5): e347-e355, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35531432

RESUMO

Background: The SARS-CoV-2 omicron variant (B.1.1.529) is highly transmissible, but disease severity appears to be reduced compared with previous variants such as alpha and delta. We investigated the risk of severe outcomes following infection in residents of long-term care facilities. Methods: We did a prospective cohort study in residents of long-term care facilities in England who were tested regularly for SARS-CoV-2 between Sept 1, 2021, and Feb 1, 2022, and who were participants of the VIVALDI study. Residents were eligible for inclusion if they had a positive PCR or lateral flow device test during the study period, which could be linked to a National Health Service (NHS) number, enabling linkage to hospital admissions and mortality datasets. PCR or lateral flow device test results were linked to national hospital admission and mortality records using the NHS-number-based pseudo-identifier. We compared the risk of hospital admission (within 14 days following a positive SARS-CoV-2 test) or death (within 28 days) in residents who had tested positive for SARS-CoV-2 in the period shortly before omicron emerged (delta-dominant) and in the omicron-dominant period, adjusting for age, sex, primary vaccine course, past infection, and booster vaccination. Variants were confirmed by sequencing or spike-gene status in a subset of samples. Results: 795 233 tests were done in 333 long-term care facilities, of which 159 084 (20·0%) could not be linked to a pseudo-identifier and 138 012 (17·4%) were done in residents. Eight residents had two episodes of infection (>28 days apart) and in these cases the second episode was excluded from the analysis. 2264 residents in 259 long-term care facilities (median age 84·5 years, IQR 77·9-90·0) were diagnosed with SARS-CoV-2, of whom 253 (11·2%) had a previous infection and 1468 (64·8%) had received a booster vaccination. About a third of participants were male. Risk of hospital admissions was markedly lower in the 1864 residents infected in the omicron-period (4·51%, 95% CI 3·65-5·55) than in the 400 residents infected in the pre-omicron period (10·50%, 7·87-13·94), as was risk of death (5·48% [4·52-6·64] vs 10·75% [8·09-14·22]). Adjusted hazard ratios (aHR) also indicated a reduction in hospital admissions (0·64, 95% CI 0·41-1·00; p=0·051) and mortality (aHR 0·68, 0·44-1·04; p=0·076) in the omicron versus the pre-omicron period. Findings were similar in residents with a confirmed variant. Interpretation: Observed reduced severity of the omicron variant compared with previous variants suggests that the wave of omicron infections is unlikely to lead to a major surge in severe disease in long-term care facility populations with high levels of vaccine coverage or natural immunity. Continued surveillance in this vulnerable population is important to protect residents from infection and monitor the public health effect of emerging variants. Funding: UK Department of Health and Social Care.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Assistência de Longa Duração , Masculino , Estudos Prospectivos , Medicina Estatal
10.
Lancet Healthy Longev ; 3(7): e470-e480, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35813279

RESUMO

Background: Residents and staff in long-term care facilities have been prioritised for vaccination against SARS-CoV-2, but data on potential waning of vaccine effectiveness and the effect of booster doses in this vulnerable population are scarce. We aimed to evaluate effectiveness of one, two, and three vaccine doses against infection and severe clinical outcomes in staff and residents of long-term care facilities in England over the first year following vaccine roll-out. Methods: The VIVALDI study is a prospective cohort study done in 331 long-term care facilities in England. Residents aged 65 years or older and staff aged 18 years or older were eligible for participation. Participants had routine PCR testing throughout the study period between Dec 8, 2020, and Dec 11, 2021. We retrieved all PCR results and cycle threshold values for PCR-positive samples from routine testing in long-term care facilities, and positive PCR results from clinical testing in hospitals through the UK's COVID-19 Datastore. PCR results were linked to participants using pseudo-identifiers based on individuals' unique UK National Health Service (NHS) numbers, which were also used to retrieve vaccination records from the National Immunisation Management Service, hospitalisation records from NHS England, and deaths data from the Office for National Statistics through the COVID-19 Datastore. In a Cox proportional hazards regression, we estimated vaccine effectiveness against SARS-CoV-2 infection, COVID-19-related hospitalisation, and COVID-19-related death after one, two, and three vaccine doses, separately by previous SARS-CoV-2 exposure. This study is registered with the ISRCTN Registry, ISRCTN 14447421. Findings: 80 186 residents and staff of long-term care facilities had records available for the study period, of whom 15 518 eligible residents and 19 515 eligible staff were included in the analysis. For residents without evidence of previous SARS-CoV-2 exposure, vaccine effectiveness decreased from 61·7% (95% CI 35·1 to 77·4) to 22·0% (-14·9 to 47·0) against infection; from 89·0% (70·6 to 95·9) to 56·3% (30·1 to 72·6) against hospitalisation; and from 96·4% (84·3 to 99·2) to 64·4% (36·1 to 80·1) against death, when comparing 14-83 days after dose two and 84 days or more after dose two. For staff without evidence of previous exposure, vaccine effectiveness against infection decreased slightly from 57·9% (43·1 to 68·9) at 14-83 days after dose two to 42·1% (29·9 to 52·2) at 84 days or more after dose two. There were no hospitalisations or deaths among unexposed staff at 14-83 days, but seven hospitalisations (vaccine effectiveness 91·0% [95% CI 74·3 to 96·8]) and one death were observed at 84 days or more after dose two. High vaccine effectiveness was restored following a third vaccine dose, with vaccine effectiveness in unexposed residents of 72·7% (55·8 to 83·1) against infection, 90·1% (80·6 to 95·0) against hospitalisation, and 97·5% (88·1 to 99·5) against death; and vaccine effectiveness in unexposed staff of 78·2% (70·0 to 84·1) against infection and 95·8% (49·9 to 99·6) against hospitalisation. There were no COVID-19-related deaths among unexposed staff after the third vaccine dose. Interpretation: Our findings showed substantial waning of SARS-CoV-2 vaccine effectiveness against all outcomes in residents of long-term care facilities from 12 weeks after a primary course of ChAdOx1-S or mRNA vaccines. Boosters restored protection, and maximised immunity across all outcomes. These findings show the importance of boosting and the need for ongoing surveillance in this vulnerable cohort. Funding: UK Government Department of Health and Social Care.


Assuntos
COVID-19 , Vacinas contra COVID-19 , Humanos , Assistência de Longa Duração , Estudos Prospectivos , SARS-CoV-2 , Medicina Estatal , Eficácia de Vacinas
11.
Lancet Healthy Longev ; 3(1): e13-e21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935001

RESUMO

BACKGROUND: Long-term care facilities (LTCFs) have reported high SARS-CoV-2 infection rates and related mortality, but the proportion of infected people among those who have survived, and duration of the antibody response to natural infection, is unknown. We determined the prevalence and stability of nucleocapsid antibodies (the standard assay for detection of previous infection) in staff and residents in LTCFs in England. METHODS: This was a prospective cohort study of residents 65 years or older and of staff 65 years or younger in 201 LTCFs in England between March 1, 2020, and May 7, 2021. Participants were linked to a unique pseudo-identifier based on their UK National Health Service identification number. Serial blood samples were tested for IgG antibodies against SARS-CoV-2 nucleocapsid protein using the Abbott ARCHITECT i-system (Abbott, Maidenhead, UK) immunoassay. Primary endpoints were prevalence and cumulative incidence of antibody positivity, which were weighted to the LTCF population. Incidence rate of loss of antibodies (seroreversion) was estimated from Kaplan-Meier curves. FINDINGS: 9488 samples were included, 8636 (91·0%) of which could be individually linked to 1434 residents and 3288 staff members. The cumulative incidence of nucleocapsid seropositivity was 34·6% (29·6-40·0) in residents and 26·1% (23·0-29·5) in staff over 11 months. 239 (38·6%) residents and 503 women (81·3%) were included in the antibody-waning analysis, and median follow-up was 149 days (IQR 107-169). The incidence rate of seroreversion was 2·1 per 1000 person-days at risk, and median time to reversion was 242·5 days. INTERPRETATION: At least a quarter of staff and a third of surviving residents were infected with SAR-CoV-2 during the first two waves of the pandemic in England. Nucleocapsid-specific antibodies often become undetectable within the first year following infection, which is likely to lead to marked underestimation of the true proportion of people with previous infection. Given that natural infection might act to boost vaccine responses, better assays to identify natural infection should be developed. FUNDING: UK Government Department of Health and Social Care.


Assuntos
COVID-19 , Pandemias , Anticorpos Antivirais , Feminino , Humanos , Assistência de Longa Duração , Nucleocapsídeo , Prevalência , Estudos Prospectivos , SARS-CoV-2 , Medicina Estatal
12.
Lancet Healthy Longev ; 3(7): e461-e469, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35813280

RESUMO

Background: Older age and frailty are risk factors for poor clinical outcomes following SARS-CoV-2 infection. As such, COVID-19 vaccination has been prioritised for individuals with these factors, but there is concern that immune responses might be impaired due to age-related immune dysregulation and comorbidity. We aimed to study humoral and cellular responses to COVID-19 vaccines in residents of long-term care facilities (LTCFs). Methods: In this observational cohort study, we assessed antibody and cellular immune responses following COVID-19 vaccination in members of staff and residents at 74 LTCFs across the UK. Staff and residents were eligible for inclusion if it was possible to link them to a pseudo-identifier in the COVID-19 datastore, if they had received two vaccine doses, and if they had given a blood sample 6 days after vaccination at the earliest. There were no comorbidity exclusion criteria. Participants were stratified by age (<65 years or ≥65 years) and infection status (previous SARS-CoV-2 infection [infection-primed group] or SARS-CoV-2 naive [infection-naive group]). Anticoagulated edetic acid (EDTA) blood samples were assessed and humoral and cellular responses were quantified. Findings: Between Dec 11, 2020, and June 27, 2021, blood samples were taken from 220 people younger than 65 years (median age 51 years [IQR 39-61]; 103 [47%] had previously had a SARS-CoV-2 infection) and 268 people aged 65 years or older of LTCFs (median age 87 years [80-92]; 144 [43%] had a previous SARS-CoV-2 infection). Samples were taken a median of 82 days (IQR 72-100) after the second vaccination. Antibody responses following dual vaccination were strong and equivalent between participants younger then 65 years and those aged 65 years and older in the infection-primed group (median 125 285 Au/mL [1128 BAU/mL] for <65 year olds vs 157 979 Au/mL [1423 BAU/mL] for ≥65 year olds; p=0·47). The antibody response was reduced by 2·4-times (467 BAU/mL; p≤0·0001) in infection-naive people younger than 65 years and 8·1-times (174 BAU/mL; p≤0·0001) in infection-naive residents compared with their infection-primed counterparts. Antibody response was 2·6-times lower in infection-naive residents than in infection-naive people younger than 65 years (p=0·0006). Impaired neutralisation of delta (1.617.2) variant spike binding was also apparent in infection-naive people younger than 65 years and in those aged 65 years and older. Spike-specific T-cell responses were also significantly enhanced in the infection-primed group. Infection-naive people aged 65 years and older (203 SFU per million [IQR 89-374]) had a 52% lower T-cell response compared with infection-naive people younger than 65 years (85 SFU per million [30-206]; p≤0·0001). Post-vaccine spike-specific CD4 T-cell responses displayed single or dual production of IFN-γ and IL-2 were similar across infection status groups, whereas the infection-primed group had an extended functional profile with TNFα and CXCL10 production. Interpretation: These data reveal suboptimal post-vaccine immune responses within infection-naive residents of LTCFs, and they suggest the need for optimisation of immune protection through the use of booster vaccination. Funding: UK Government Department of Health and Social Care.


Assuntos
COVID-19 , Vacinas , Idoso de 80 Anos ou mais , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunidade Celular , Assistência de Longa Duração , Pessoa de Meia-Idade , SARS-CoV-2 , Vacinação
13.
Nat Aging ; 2(6): 536-547, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118449

RESUMO

We studied humoral and cellular immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 152 long-term care facility staff and 124 residents over a prospective 4-month period shortly after the first wave of infection in England. We show that residents of long-term care facilities developed high and stable levels of antibodies against spike protein and receptor-binding domain. Nucleocapsid-specific responses were also elevated but waned over time. Antibodies showed stable and equivalent levels of functional inhibition against spike-angiotensin-converting enzyme 2 binding in all age groups with comparable activity against viral variants of concern. SARS-CoV-2 seropositive donors showed high levels of antibodies to other beta-coronaviruses but serostatus did not impact humoral immunity to influenza or other respiratory syncytial viruses. SARS-CoV-2-specific cellular responses were similar across all ages but virus-specific populations showed elevated levels of activation in older donors. Thus, survivors of SARS-CoV-2 infection show a robust and stable immunity against the virus that does not negatively impact responses to other seasonal viruses.


Assuntos
COVID-19 , Vacinas contra Influenza , Humanos , Idoso , SARS-CoV-2/genética , Assistência de Longa Duração , Estudos Prospectivos , Casas de Saúde , Anticorpos , Imunidade Celular
14.
Lancet Infect Dis ; 21(11): 1529-1538, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34174193

RESUMO

BACKGROUND: The effectiveness of SARS-CoV-2 vaccines in older adults living in long-term care facilities is uncertain. We investigated the protective effect of the first dose of the Oxford-AstraZeneca non-replicating viral-vectored vaccine (ChAdOx1 nCoV-19; AZD1222) and the Pfizer-BioNTech mRNA-based vaccine (BNT162b2) in residents of long-term care facilities in terms of PCR-confirmed SARS-CoV-2 infection over time since vaccination. METHODS: The VIVALDI study is a prospective cohort study that commenced recruitment on June 11, 2020, to investigate SARS-CoV-2 transmission, infection outcomes, and immunity in residents and staff in long-term care facilities in England that provide residential or nursing care for adults aged 65 years and older. In this cohort study, we included long-term care facility residents undergoing routine asymptomatic SARS-CoV-2 testing between Dec 8, 2020 (the date the vaccine was first deployed in a long-term care facility), and March 15, 2021, using national testing data linked within the COVID-19 Datastore. Using Cox proportional hazards regression, we estimated the relative hazard of PCR-positive infection at 0-6 days, 7-13 days, 14-20 days, 21-27 days, 28-34 days, 35-48 days, and 49 days and beyond after vaccination, comparing unvaccinated and vaccinated person-time from the same cohort of residents, adjusting for age, sex, previous infection, local SARS-CoV-2 incidence, long-term care facility bed capacity, and clustering by long-term care facility. We also compared mean PCR cycle threshold (Ct) values for positive swabs obtained before and after vaccination. The study is registered with ISRCTN, number 14447421. FINDINGS: 10 412 care home residents aged 65 years and older from 310 LTCFs were included in this analysis. The median participant age was 86 years (IQR 80-91), 7247 (69·6%) of 10 412 residents were female, and 1155 residents (11·1%) had evidence of previous SARS-CoV-2 infection. 9160 (88·0%) residents received at least one vaccine dose, of whom 6138 (67·0%) received ChAdOx1 and 3022 (33·0%) received BNT162b2. Between Dec 8, 2020, and March 15, 2021, there were 36 352 PCR results in 670 628 person-days, and 1335 PCR-positive infections (713 in unvaccinated residents and 612 in vaccinated residents) were included. Adjusted hazard ratios (HRs) for PCR-positive infection relative to unvaccinated residents declined from 28 days after the first vaccine dose to 0·44 (95% CI 0·24-0·81) at 28-34 days and 0·38 (0·19-0·77) at 35-48 days. Similar effect sizes were seen for ChAdOx1 (adjusted HR 0·32, 95% CI 0·15-0·66) and BNT162b2 (0·35, 0·17-0·71) vaccines at 35-48 days. Mean PCR Ct values were higher for infections that occurred at least 28 days after vaccination than for those occurring before vaccination (31·3 [SD 8·7] in 107 PCR-positive tests vs 26·6 [6·6] in 552 PCR-positive tests; p<0·0001). INTERPRETATION: Single-dose vaccination with BNT162b2 and ChAdOx1 vaccines provides substantial protection against infection in older adults from 4-7 weeks after vaccination and might reduce SARS-CoV-2 transmission. However, the risk of infection is not eliminated, highlighting the ongoing need for non-pharmaceutical interventions to prevent transmission in long-term care facilities. FUNDING: UK Government Department of Health and Social Care.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Casas de Saúde/estatística & dados numéricos , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162 , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Vacinas contra COVID-19/administração & dosagem , ChAdOx1 nCoV-19 , Inglaterra/epidemiologia , Feminino , Humanos , Esquemas de Imunização , Incidência , Masculino , Vacinação em Massa/métodos , Vacinação em Massa/estatística & dados numéricos , Estudos Prospectivos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Resultado do Tratamento
15.
Lancet Healthy Longev ; 2(6): e362-e370, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34104901

RESUMO

BACKGROUND: SARS-CoV-2 infection represents a major challenge for long-term care facilities (LTCFs) and many residents and staff are seropositive following persistent outbreaks. We aimed to investigate the association between the SARS-CoV-2 antibody status at baseline and subsequent infection in this population. METHODS: We did a prospective cohort study of SARS-CoV-2 infection in staff (aged <65 years) and residents (aged >65 years) at 100 LTCFs in England between Oct 1, 2020, and Feb 1, 2021. Blood samples were collected between June and November, 2020, at baseline, and 2 and 4 months thereafter and tested for IgG antibodies to SARS-CoV-2 nucleocapsid and spike proteins. PCR testing for SARS-CoV-2 was done weekly in staff and monthly in residents. Cox regression was used to estimate hazard ratios (HRs) of a PCR-positive test by baseline antibody status, adjusted for age and sex, and stratified by LTCF. FINDINGS: 682 residents from 86 LCTFs and 1429 staff members from 97 LTCFs met study inclusion criteria. At baseline, IgG antibodies to nucleocapsid were detected in 226 (33%) of 682 residents and 408 (29%) of 1429 staff members. 93 (20%) of 456 residents who were antibody-negative at baseline had a PCR-positive test (infection rate 0·054 per month at risk) compared with four (2%) of 226 residents who were antibody-positive at baseline (0·007 per month at risk). 111 (11%) of 1021 staff members who were antibody-negative at baseline had PCR-positive tests (0·042 per month at risk) compared with ten (2%) of 408 staff members who were antibody-positive staff at baseline (0·009 per month at risk). The risk of PCR-positive infection was higher for residents who were antibody-negative at baseline than residents who were antibody-positive at baseline (adjusted HR [aHR] 0·15, 95% CI 0·05-0·44, p=0·0006), and the risk of a PCR-positive infection was also higher for staff who were antibody-negative at baseline compared with staff who were antibody-positive at baseline (aHR 0·39, 0·19-0·82; p=0·012). 12 of 14 reinfected participants had available data on symptoms, and 11 of these participants were symptomatic. Antibody titres to spike and nucleocapsid proteins were comparable in PCR-positive and PCR-negative cases. INTERPRETATION: The presence of IgG antibodies to nucleocapsid protein was associated with substantially reduced risk of reinfection in staff and residents for up to 10 months after primary infection. FUNDING: UK Government Department of Health and Social Care.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunoglobulina G , Incidência , Assistência de Longa Duração , Proteínas do Nucleocapsídeo , Estudos Prospectivos , SARS-CoV-2
16.
Lancet Healthy Longev ; 2(9): e554-e560, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34401865

RESUMO

BACKGROUND: In several countries, extended interval COVID-19 vaccination regimens are now used to accelerate population coverage, but the relative immunogenicity of different vaccines in older people remains uncertain. In this study we aimed to assess the antibody and cellular responses of older people after a single dose of either the BNT162b2 vaccine (tozinameran; Pfizer-BioNTech) or ChAdOx1 nCoV-19 vaccine (Oxford University-AstraZeneca). METHODS: Participants aged 80 years or older, who did not live in a residential or care home or require assisted living, and had received a single dose of either the BNT162b2 vaccine or ChAdOx1 nCoV-19 vaccine were eligible to participate. Participants were recruited through local primary care networks in the West Midlands, UK. Blood samples and dried blood spots were taken 5-6 weeks after vaccination to assess adaptive immune responses using Elecsys electrochemiluminescence immunoassay and cellular responses by ELISpot. Primary endpoints were percentage response and quantification of adaptive immunity. FINDINGS: Between Dec 29, 2020, and Feb 28, 2021, 165 participants were recruited and included in the analysis. 76 participants had received BNT162b2 (median age 84 years, IQR 82-89; range 80-98) and 89 had received ChAdOx1 nCoV-19 (median age 84 years, 81-87; 80-99). Antibody responses against the spike protein were detectable in 69 (93%) of 74 BNT162b2 vaccine recipients and 77 (87%) of 89 ChAdOx1 nCoV-19 vaccine recipients. Median antibody titres were of 19·3 U/mL (7·4-79·4) in the BNT162b2 vaccine recipients and 19·6 U/mL (6·1-60·0) in the ChAdOx1 nCoV-19 vaccine recipients (p=0·41). Spike protein-specific T-cell responses were observed in nine (12%) of 73 BNT162b2 vaccine recipients and 27 (31%) of 88 ChAdOx1 nCoV-19 vaccine recipients, and median responses were three-times higher in ChAdOx1 nCoV-19 vaccine recipients (24 spots per 1 × 106 peripheral blood mononuclear cells) than BNT162b2 vaccine recipients (eight spots per 1 × 106 peripheral blood mononuclear cells; p<0·0001). Humoral and cellular immune responses against spike protein were correlated in both cohorts. Evidence of previous SARS-CoV-2 infection was seen in eight participants (n=5 BNT162b2 recipients and n=3 ChAdOx1 nCoV-19 recipients), and was associated with 691-times and four-times increase in humoral and cellular immune responses across the whole cohort. INTERPRETATION: Single doses of either BNT162b2 or ChAdOx1 nCoV-19 in older people induces humoral immunity in most participants, and is markedly enhanced by previous infection. Cellular responses were weaker, but showed enhancement after the ChAdOx1 nCoV-19 vaccine at the 5-6 week timepoint. FUNDING: Medical Research Council, National Institute for Health Research, and National Core Studies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Idoso de 80 Anos ou mais , Anticorpos Antivirais , Vacina BNT162 , ChAdOx1 nCoV-19 , Humanos , Leucócitos Mononucleares , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
17.
Lancet Healthy Longev ; 2(9): e544-e553, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34430954

RESUMO

BACKGROUND: Residents of long-term care facilities (LTCFs) have been prioritised for COVID-19 vaccination because of the high COVID-19 mortality in this population. Several countries have implemented an extended interval of up to 12 weeks between the first and second vaccine doses to increase population coverage of single-dose vaccination. We aimed to assess the magnitude and quality of adaptive immune responses following a single dose of COVID-19 vaccine in LTCF residents and staff. METHODS: From the LTCFs participating in the ongoing VIVALDI study (ISRCTN14447421), staff and residents who had received a first dose of COVID-19 vaccine (BNT162b2 [tozinameran] or ChAdOx1 nCoV-19), had pre-vaccination and post-vaccination blood samples (collected between Dec 11, 2020, and Feb 16, 2021), and could be linked to a pseudoidentifier in the COVID-19 Data Store were included in our cohort. Past infection with SARS-CoV-2 was defined on the basis of nucleocapsid-specific IgG antibodies being detected through a semiquantitative immunoassay, and participants who tested positive on this assay after but not before vaccination were excluded from the study. Processed blood samples were assessed for spike-specific immune responses, including spike-specific IgG antibody titres, T-cell responses to spike protein peptide mixes, and inhibition of ACE2 binding by spike protein from four variants of SARS-CoV-2 (the original strain as well as the B.1.1.7, B.1.351, and P.1 variants). Responses before and after vaccination were compared on the basis of age, previous infection status, role (staff or resident), and time since vaccination. FINDINGS: Our cohort comprised 124 participants from 14 LTCFs: 89 (72%) staff (median age 48 years [IQR 35·5-56]) and 35 (28%) residents (87 years [77-90]). Blood samples were collected a median 40 days (IQR 25-47; range 6-52) after vaccination. 30 (24%) participants (18 [20%] staff and 12 [34%] residents) had serological evidence of previous SARS-CoV-2 infection. All participants with previous infection had high antibody titres following vaccination that were independent of age (r s=0·076, p=0·70). In participants without evidence of previous infection, titres were negatively correlated with age (r s=-0·434, p<0·0001) and were 8·2-times lower in residents than in staff. This effect appeared to result from a kinetic delay antibody generation in older infection-naive participants, with the negative age correlation disappearing only in samples taken more than 42 days post-vaccination (r s=-0·207, p=0·20; n=40), in contrast to samples taken after 0-21 days (r s=-0·774, p=0·0043; n=12) or 22-42 days (r s=-0·437, p=0·0034; n=43). Spike-specific cellular responses were similar between older and younger participants. In infection-naive participants, antibody inhibition of ACE2 binding by spike protein from the original SARS-CoV-2 strain was negatively correlated with age (r s=-0·439, p<0·0001), and was significantly lower against spike protein from the B.1.351 variant (median inhibition 31% [14-100], p=0·010) and the P.1 variant (23% [14-97], p<0·0001) than against the original strain (58% [27-100]). By contrast, a single dose of vaccine resulted in around 100% inhibition of the spike-ACE2 interaction against all variants in people with a history of infection. INTERPRETATION: History of SARS-CoV-2 infection impacts the magnitude and quality of antibody response after a single dose of COVID-19 vaccine in LTCF residents. Residents who are infection-naive have delayed antibody responses to the first dose of vaccine and should be considered for an early second dose where possible. FUNDING: UK Government Department of Health and Social Care.


Assuntos
COVID-19 , Vacinas , Adulto , Enzima de Conversão de Angiotensina 2 , Vacina BNT162 , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Imunidade Celular , Pessoa de Meia-Idade , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
18.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586068

RESUMO

Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However, vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials. We determined the serological and cellular response to spike protein in 100 people aged 80-96 years at 2 weeks after the second vaccination with the Pfizer BNT162b2 mRNA vaccine. Antibody responses were seen in every donor with high titers in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher, respectively, after dual vaccination. Post-vaccine sera mediated strong neutralization of live Victoria infection and although neutralization titers were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective. These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 variant of concern.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , RNA Mensageiro/imunologia , SARS-CoV-2/imunologia , Fatores Etários , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacina BNT162 , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Imunidade Celular , Imunidade Humoral/imunologia , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
19.
Essays Biochem ; 62(6): 725-735, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30287587

RESUMO

Microtubules are key players in cellular self-organization, acting as structural scaffolds, cellular highways, force generators and signalling platforms. Microtubules are polar filaments that undergo dynamic instability, i.e. transition between phases of growth and shrinkage. This allows microtubules to explore the inner space of the cell, generate pushing and pulling forces and remodel themselves into arrays with different geometry and function such as the mitotic spindle. To do this, eukaryotic cells employ an arsenal of regulatory proteins to control microtubule dynamics spatially and temporally. Plants and microorganisms have developed secondary metabolites that perturb microtubule dynamics, many of which are in active use as cancer chemotherapeutics and anti-inflammatory drugs. Here, we summarize the methods used to visualize microtubules and to measure the parameters of dynamic instability to study both microtubule regulatory proteins and the action of small molecules interfering with microtubule assembly and/or disassembly.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Modelos Biológicos , Fuso Acromático/fisiologia , Animais , Fenômenos Biomecânicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA