Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
FASEB J ; 38(14): e23822, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39072864

RESUMO

Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c. 360 nucleotide-long stem-loop, termed the short (S) fragment. This structure is highly conserved and essential for viral replication, but the precise function(s) are unclear. Here, we used selective 2' hydroxyl acetylation analyzed by primer extension (SHAPE) to experimentally determine aspects of the structure, alongside comparative genomic analyses to confirm structure conservation from a wide range of field isolates. To examine its role in virus replication in cell culture, we introduced a series of deletions to the distal and proximal regions of the stem-loop. These truncations affected genome replication in a size-dependent and, in some cases, host cell-dependent manner. Furthermore, during the passage of viruses incorporating the largest tolerated deletion from the proximal region of the S fragment stem-loop, an additional mutation was selected in the viral RNA-dependent RNA polymerase, 3Dpol. These data suggest that the S fragment and 3Dpol interact in the formation of the FMDV replication complex.


Assuntos
Vírus da Febre Aftosa , Conformação de Ácido Nucleico , RNA Viral , Replicação Viral , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Replicação Viral/genética , RNA Viral/genética , RNA Viral/metabolismo , Animais , Regiões 5' não Traduzidas , Febre Aftosa/virologia , Genoma Viral , Linhagem Celular , Cricetinae
2.
PLoS Pathog ; 18(6): e1010589, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666744

RESUMO

Non-coding regions of viral RNA (vRNA) genomes are critically important in the regulation of gene expression. In particular, pseudoknot (PK) structures, which are present in a wide range of RNA molecules, have a variety of roles. The 5' untranslated region (5' UTR) of foot-and-mouth disease virus (FMDV) vRNA is considerably longer than in other viruses from the picornavirus family and consists of a number of distinctive structural motifs that includes multiple (2, 3 or 4 depending on the virus strain) putative PKs linked in tandem. The role(s) of the PKs in the FMDV infection are not fully understood. Here, using bioinformatics, sub-genomic replicons and recombinant viruses we have investigated the structural conservation and importance of the PKs in the FMDV lifecycle. Our results show that despite the conservation of two or more PKs across all FMDVs, a replicon lacking PKs was replication competent, albeit at reduced levels. Furthermore, in competition experiments, GFP FMDV replicons with less than two (0 or 1) PK structures were outcompeted by a mCherry FMDV wt replicon that had 4 PKs, whereas GFP replicons with 2 or 4 PKs were not. This apparent replicative advantage offered by the additional PKs correlates with the maintenance of at least two PKs in the genomes of FMDV field isolates. Despite a replicon lacking any PKs retaining the ability to replicate, viruses completely lacking PK were not viable and at least one PK was essential for recovery of infections virus, suggesting a role for the PKs in virion assembly. Thus, our study points to roles for the PKs in both vRNA replication and virion assembly, thereby improving understanding the molecular biology of FMDV replication and the wider roles of PK in RNA functions.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Regiões 5' não Traduzidas , Animais , Vírus de DNA , Febre Aftosa/genética , Vírus da Febre Aftosa/genética , Genoma Viral , RNA Viral/química , Replicação Viral/genética
3.
J Virol ; 96(7): e0008222, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293769

RESUMO

Kobuviruses are an unusual and poorly characterized genus within the picornavirus family and can cause gastrointestinal enteric disease in humans, livestock, and pets. The human kobuvirus Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of 5 years; however, this is a very rare occurrence. During the assembly of most picornaviruses (e.g., poliovirus, rhinovirus, and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure, and enhances permeabilization of model membranes. Furthermore, using peptides we demonstrate that the N terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. IMPORTANCE To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small nonenveloped RNA viruses includes significant human and animal pathogens and is also a model to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses rearrange their capsids and induce membrane permeability in the absence of VP4. Here, we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.


Assuntos
Kobuvirus , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Kobuvirus/genética , Kobuvirus/metabolismo , Internalização do Vírus
4.
PLoS Pathog ; 16(12): e1009146, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370422

RESUMO

Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Enterovirus/fisiologia , RNA Viral/genética , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Enterovirus/ultraestrutura , RNA Viral/ultraestrutura
5.
Proc Natl Acad Sci U S A ; 115(10): 2371-2376, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463763

RESUMO

In response to viral infection, cells mount a potent inflammatory response that relies on ISG15 and ubiquitin posttranslational modifications. Many viruses use deubiquitinases and deISGylases that reverse these modifications and antagonize host signaling processes. We here reveal that the leader protease, Lbpro, from foot-and-mouth disease virus (FMDV) targets ISG15 and to a lesser extent, ubiquitin in an unprecedented manner. Unlike canonical deISGylases that hydrolyze the isopeptide linkage after the C-terminal GlyGly motif, Lbpro cleaves the peptide bond preceding the GlyGly motif. Consequently, the GlyGly dipeptide remains attached to the substrate Lys, and cleaved ISG15 is rendered incompetent for reconjugation. A crystal structure of Lbpro bound to an engineered ISG15 suicide probe revealed the molecular basis for ISG15 proteolysis. Importantly, anti-GlyGly antibodies, developed for ubiquitin proteomics, are able to detect Lbpro cleavage products during viral infection. This opens avenues for infection detection of FMDV based on an immutable, host-derived epitope.


Assuntos
Citocinas , Endopeptidases , Ubiquitina/metabolismo , Ubiquitinas , Cristalografia , Citocinas/química , Citocinas/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato , Ubiquitinas/química , Ubiquitinas/metabolismo
6.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212943

RESUMO

Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug.IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Montagem de Vírus , Proteases Virais 3C , Animais , Benzoquinonas/farmacologia , Proteínas do Capsídeo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Sistema Livre de Células , Cricetinae , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Febre Aftosa/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Isoxazóis/farmacologia , Lactamas Macrocíclicas/farmacologia , Precursores de Proteínas/efeitos dos fármacos , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , RNA Viral/genética , RNA Viral/metabolismo , Resorcinóis/farmacologia , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral
7.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046452

RESUMO

Nonenveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome, as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals, and human. In the picornavirus family of nonenveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here, we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA, we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem-loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses.IMPORTANCE In order to transmit their genetic material to a new host, nonenveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many nonenveloped RNA viruses the requirements for this critical part of the viral life cycle remains poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple, and transferable to the study of packaging signals in other RNA viruses. Improved understanding of RNA packaging may lead to novel vaccine approaches or targets for antiviral drugs with broad-spectrum activity.


Assuntos
Vírus da Febre Aftosa/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Viral/química , Montagem de Vírus , Animais , Linhagem Celular , Cricetinae , Vírus da Febre Aftosa/genética , Genoma Viral , Modelos Moleculares , Conformação de Ácido Nucleico , Análise de Sequência de RNA/métodos
8.
PLoS Pathog ; 13(2): e1006197, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28166307

RESUMO

Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus) acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.


Assuntos
Infecções por Picornaviridae/metabolismo , Picornaviridae/patogenicidade , RNA Viral/metabolismo , Vírion/patogenicidade , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Lipossomos , Microscopia de Fluorescência , Picornaviridae/metabolismo
9.
PLoS Pathog ; 13(10): e1006666, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968463

RESUMO

The RNA genomes of picornaviruses are translated into single polyproteins which are subsequently cleaved into structural and non-structural protein products. For genetic economy, proteins and processing intermediates have evolved to perform distinct functions. The picornavirus precursor protein, P3, is cleaved to produce membrane-associated 3A, primer peptide 3B, protease 3Cpro and polymerase 3Dpol. Uniquely, foot-and-mouth disease virus (FMDV) encodes three similar copies of 3B (3B1-3), thus providing a convenient natural system to explore the role(s) of 3B in the processing cascade. Using a replicon system, we confirmed by genetic deletion or functional inactivation that each copy of 3B appears to function independently to prime FMDV RNA replication. However, we also show that deletion of 3B3 prevents replication and that this could be reversed by introducing mutations at the C-terminus of 3B2 that restored the natural sequence at the 3B3-3C cleavage site. In vitro translation studies showed that precursors with 3B3 deleted were rapidly cleaved to produce 3CD but that no polymerase, 3Dpol, was detected. Complementation assays, using distinguishable replicons bearing different inactivating mutations, showed that replicons with mutations within 3Dpol could be recovered by 3Dpol derived from "helper" replicons (incorporating inactivation mutations in all three copies of 3B). However, complementation was not observed when the natural 3B-3C cleavage site was altered in the "helper" replicon, again suggesting that a processing abnormality at this position prevented the production of 3Dpol. When mutations affecting polyprotein processing were introduced into an infectious clone, viable viruses were recovered but these had acquired compensatory mutations in the 3B-3C cleavage site. These mutations were shown to restore the wild-type processing characteristics when analysed in an in vitro processing assay. Overall, this study demonstrates a dual functional role of the small primer peptide 3B3, further highlighting how picornaviruses increase genetic economy.


Assuntos
Vírus da Febre Aftosa/genética , RNA Viral/genética , Proteínas Virais/metabolismo , Replicação Viral , Animais , Replicação do DNA/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/genética , RNA Viral/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Replicação Viral/genética
10.
PLoS Pathog ; 13(9): e1006607, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28937999

RESUMO

Foot-and-mouth disease virus (FMDV) belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5) release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses) have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4), N-termini (VP1) and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å). In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 ßB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Vírus da Febre Aftosa/química , Vírion/química , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Modelos Moleculares , RNA Viral/metabolismo , Vírion/genética , Vírion/metabolismo
11.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28228588

RESUMO

Picornavirus replication is known to cause extensive remodeling of Golgi and endoplasmic reticulum membranes, and a number of the host proteins involved in the viral replication complex have been identified, including oxysterol binding protein (OSBP) and phosphatidylinositol 4-kinase III beta (PI4KB). Since both OSBP and PI4KB are substrates for protein kinase D (PKD) and PKD is known to be involved in the control of Golgi membrane vesicular and lipid transport, we hypothesized that PKD played a role in viral replication. We present multiple lines of evidence in support of this hypothesis. First, infection of HeLa cells with human rhinovirus (HRV) induced the phosphorylation of PKD. Second, PKD inhibitors reduced HRV genome replication, protein expression, and titers in a concentration-dependent fashion and also blocked the replication of poliovirus (PV) and foot-and-mouth disease virus (FMDV) in a variety of cells. Third, HRV replication was significantly reduced in HeLa cells overexpressing wild-type and mutant forms of PKD1. Fourth, HRV genome replication was reduced in HAP1 cells in which the PKD1 gene was knocked out by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Although we have not identified the molecular mechanism through which PKD regulates viral replication, our data suggest that this is not due to enhanced interferon signaling or an inhibition of clathrin-mediated endocytosis, and PKD inhibitors do not need to be present during viral uptake. Our data show for the first time that targeting PKD with small molecules can inhibit the replication of HRV, PV, and FMDV, and therefore, PKD may represent a novel antiviral target for drug discovery.IMPORTANCE Picornaviruses remain an important family of human and animal pathogens for which we have a very limited arsenal of antiviral agents. HRV is the causative agent of the common cold, which in itself is a relatively trivial infection; however, in asthma and chronic obstructive pulmonary disease (COPD) patients, this virus is a major cause of exacerbations resulting in an increased use of medication, worsening symptoms, and, frequently, hospital admission. Thus, HRV represents a substantial health care and economic burden for which there are no approved therapies. We sought to identify a novel host target as a potential anti-HRV therapy. HRV infection induces the phosphorylation of PKD, and inhibitors of this kinase effectively block HRV replication at an early stage of the viral life cycle. Moreover, PKD inhibitors also block PV and FMDV replication. This is the first description that PKD may represent a target for antiviral drug discovery.


Assuntos
Replicação do DNA/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Poliovirus/crescimento & desenvolvimento , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Rhinovirus/crescimento & desenvolvimento , Rhinovirus/genética , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Cricetinae , DNA Viral/biossíntese , Vírus da Febre Aftosa/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Interferon Tipo I/metabolismo , Fosforilação , Poliovirus/genética , Proteína Quinase C/metabolismo , Pirimidinas/farmacologia
12.
J Gen Virol ; 97(12): 3238-3242, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902347

RESUMO

Human rhinovirus is the causative agent of the common cold and belongs to the non-enveloped picornavirus family. A trigger such as receptor binding or low pH initiates conformational changes in the capsid that allow the virus to attach to membranes and form a pore for the translocation of viral RNA into the cytoplasm. We previously showed that recombinant capsid protein VP4 was able to form membrane pores. In this study, we show the N-terminus but not C-terminus of VP4 formed pores with properties similar to full-length VP4 and consistent with the size required for transfer of RNA. Sera against the N-terminus but not C-terminus of VP4 were shown to neutralize virus infectivity. Together, this suggests that the N-terminus of VP4 is responsible for membrane activity. This study contributes to an improved understanding of the mechanisms for involvement of VP4 in entry and its potential as an antiviral target.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Membrana Celular/virologia , Infecções por Picornaviridae/virologia , Rhinovirus/imunologia , Motivos de Aminoácidos , Proteínas do Capsídeo/genética , Sequência Conservada , Humanos , Infecções por Picornaviridae/imunologia , Rhinovirus/química , Rhinovirus/genética
13.
PLoS Pathog ; 10(8): e1004294, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25102288

RESUMO

Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family.


Assuntos
Proteínas do Capsídeo/metabolismo , Permeabilidade da Membrana Celular , Rhinovirus/patogenicidade , Western Blotting , Células HeLa , Humanos , Lipossomos , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes/metabolismo , Rhinovirus/metabolismo
15.
Viruses ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016442

RESUMO

Viruses can evolve to respond to immune pressures conferred by specific antibodies generated after vaccination and/or infection. In this study, an in vitro system was developed to investigate the impact of serum-neutralising antibodies upon the evolution of a foot-and-mouth disease virus (FMDV) isolate. The presence of sub-neutralising dilutions of specific antisera delayed the onset of virus-induced cytopathic effect (CPE) by up to 44 h compared to the untreated control cultures. Continued virus passage with sub-neutralising dilutions of these sera resulted in a decrease in time to complete CPE, suggesting that FMDV in these cultures adapted to escape immune pressure. These phenotypic changes were associated with three separate consensus-level non-synonymous mutations that accrued in the viral RNA-encoding amino acids at positions VP266, VP280 and VP1155, corresponding to known epitope sites. High-throughput sequencing also identified further nucleotide substitutions within the regions encoding the leader (Lpro), VP4, VP2 and VP3 proteins. While association of the later mutations with the adaptation to immune pressure must be further verified, these results highlight the multiple routes by which FMDV populations can escape neutralising antibodies and support the application of a simple in vitro approach to assess the impact of the humoral immune system on the evolution of FMDV and potentially other viruses.


Assuntos
Vírus da Febre Aftosa , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Epitopos/genética
16.
Viruses ; 14(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35458444

RESUMO

Foot-and-mouth disease (FMD) is a disease of cloven-hoofed livestock caused by FMD virus (FMDV). FMD can be controlled through the use of inactivated vaccines, and it is well established that the protection afforded by FMD vaccines correlates strongly with neutralising antibody titres. However, the overall strength of binding, referred to as avidity, is also an important parameter with respect to the ability of antibodies to neutralise virus infection, and there is evidence that avidity can affect the level of protection afforded by FMDV vaccines. Here, as an alternative to modified enzyme-linked immunosorbent assays (avidity ELISAs) incorporating a chaotropic wash step, we used bio-layer interferometry (BLI) to measure the avidity of bovine polyclonal antibodies against FMDV capsids. We conducted preliminary experiments using recombinant FMDV capsids, as well as peptides representing antigenic loops, to demonstrate that the binding of monoclonal antibodies targeting specific antigenic sites could be detected using BLI. Subsequent experiments using polyclonal sera derived from FMD vaccinated cattle provided evidence of a positive correlation between the neutralising titre of the serum and the avidity as measured by BLI. Furthermore, we observed an increase in BLI avidity, as well as in the titre, in vaccinated animals upon challenge with the live virus.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Anticorpos Antivirais , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Interferometria
17.
J Virol ; 84(12): 6235-40, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375159

RESUMO

Equine rhinitis A virus (ERAV) is genetically closely related to foot-and-mouth disease virus (FMDV), and both are now classified within the genus Aphthovirus of the family Picornaviridae. For disease security reasons, FMDV can be handled only in high-containment facilities, but these constraints do not apply to ERAV, making it an attractive alternative for the study of aphthovirus biology. Here, we show, using immunofluorescence, pharmacological agents, and dominant negative inhibitors, that ERAV entry occurs (as for FMDV) via clathrin-mediated endocytosis and acidification of early endosomes. This validates the use of ERAV as a model system to study the mechanism of cell entry by FMDV.


Assuntos
Ácidos/metabolismo , Aphthovirus/fisiologia , Endossomos/metabolismo , Infecções por Picornaviridae/virologia , Internalização do Vírus , Clatrina/metabolismo , Endocitose , Endossomos/virologia , Células HeLa , Humanos , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/fisiopatologia
18.
PLoS Pathog ; 5(10): e1000620, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19816570

RESUMO

Equine rhinitis A virus (ERAV) is closely related to foot-and-mouth disease virus (FMDV), belonging to the genus Aphthovirus of the Picornaviridae. How picornaviruses introduce their RNA genome into the cytoplasm of the host cell to initiate replication is unclear since they have no lipid envelope to facilitate fusion with cellular membranes. It has been thought that the dissociation of the FMDV particle into pentameric subunits at acidic pH is the mechanism for genome release during cell entry, but this raises the problem of how transfer across the endosome membrane of the genome might be facilitated. In contrast, most other picornaviruses form 'altered' particle intermediates (not reported for aphthoviruses) thought to induce membrane pores through which the genome can be transferred. Here we show that ERAV, like FMDV, dissociates into pentamers at mildly acidic pH but demonstrate that dissociation is preceded by the transient formation of empty 80S particles which have released their genome and may represent novel biologically relevant intermediates in the aphthovirus cell entry process. The crystal structures of the native ERAV virus and a low pH form have been determined via highly efficient crystallization and data collection strategies, required due to low virus yields. ERAV is closely similar to FMDV for VP2, VP3 and part of VP4 but VP1 diverges, to give a particle with a pitted surface, as seen in cardioviruses. The low pH particle has internal structure consistent with it representing a pre-dissociation cell entry intermediate. These results suggest a unified mechanism of picornavirus cell entry.


Assuntos
Aphthovirus/fisiologia , Infecções por Picornaviridae/fisiopatologia , Animais , Aphthovirus/genética , Aphthovirus/ultraestrutura , Chlorocebus aethiops/virologia , Febre Aftosa/genética , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Concentração de Íons de Hidrogênio , Picornaviridae/fisiologia , RNA Viral/genética , Infecções Respiratórias/virologia , Viremia
19.
Curr Top Microbiol Immunol ; 343: 43-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20397067

RESUMO

The picornavirus family consists of a large number of small RNA viruses, many of which are significant pathogens of humans and livestock. They are amongst the simplest of vertebrate viruses comprising a single stranded positive sense RNA genome within a T = 1 (quasi T = 3) icosahedral protein capsid of approximately 30 nm diameter. The structures of a number of picornaviruses have been determined at close to atomic resolution by X-ray crystallography. The structures of cell entry intermediate particles and complexes of virus particles with receptor molecules or antibodies have also been obtained by X-ray crystallography or at a lower resolution by cryo-electron microscopy. Many of the receptors used by different picornaviruses have been identified, and it is becoming increasingly apparent that many use co-receptors and alternative receptors to bind to and infect cells. However, the mechanisms by which these viruses release their genomes and transport them across a cellular membrane to gain access to the cytoplasm are still poorly understood. Indeed, detailed studies of cell entry mechanisms have been made only on a few members of the family, and it is yet to be established how broadly the results of these are applicable across the full spectrum of picornaviruses. Working models of the cell entry process are being developed for the best studied picornaviruses, the enteroviruses. These viruses maintain particle integrity throughout the infection process and function as genome delivery modules. However, there is currently no model to explain how viruses such as cardio- and aphthoviruses that appear to simply dissociate into subunits during uncoating deliver their genomes into the cytoplasm.


Assuntos
Picornaviridae/fisiologia , Internalização do Vírus , Animais , Caveolina 1/fisiologia , Clatrina/fisiologia , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Picornaviridae/ultraestrutura , Receptores Virais/fisiologia , Vírion/ultraestrutura
20.
Life (Basel) ; 11(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072387

RESUMO

Picornavirus capsids are assembled from 60 copies of a capsid precursor via a pentameric assembly intermediate or 'pentamer'. Upon completion of virion assembly, a maturation event induces a final cleavage of the capsid precursor to create the capsid protein VP4, which is essential for capsid stability and entry into new cells. For the picornavirus foot-and-mouth disease virus (FMDV), intact capsids are temperature and acid-labile and can disassemble into pentamers. During disassembly, capsid protein VP4 is lost, presumably altering the structure and properties of the resulting pentamers. The purpose of this study was to compare the characteristics of recombinant "assembly" and "disassembly" pentamers. We generated recombinant versions of these different pentamers containing an engineered cleavage site to mimic the maturation cleavage. We compared the sedimentation and antigenic characteristics of these pentamers using sucrose density gradients and reactivity with an antibody panel. Pentamers mimicking the assembly pathway sedimented faster than those on the disassembly pathway suggesting that for FMDV, in common with other picornaviruses, assembly pentamers sediment at 14S whereas only pentamers on the disassembly pathway sediment at 12S. The reactivity with anti-VP4 antibodies was reduced for the 12S pentamers, consistent with the predicted loss of VP4. Reactivity with other antibodies was similar for both pentamers suggesting that major antigenic features may be preserved between the VP4 containing assembly pentamers and the disassembly pentamers lacking VP4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA