Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Environ Microbiol ; 89(8): e0179422, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37439668

RESUMO

Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.


Assuntos
Carbonato de Cálcio , Conservação de Recursos Energéticos , Microbiologia Industrial , Sporosarcina , Compostos de Amônio/metabolismo , Carbonato de Cálcio/economia , Carbonato de Cálcio/metabolismo , Precipitação Química , Sporosarcina/citologia , Sporosarcina/metabolismo , Ureia/metabolismo
2.
Environ Microbiol ; 22(12): 4919-4933, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32935433

RESUMO

In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano/genética , Lisogenia/genética , Prófagos/genética , Bactérias/virologia , Bacteriófagos/genética , Evolução Biológica , Oceanos e Mares , Prevalência
3.
PLoS One ; 19(7): e0307131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990883

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0267881.].

4.
J Microbiol Biol Educ ; 24(2)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37614894

RESUMO

Science literacy has many personal and societal benefits that allows for better informed decision-making. Although the importance of science literacy is recognized globally, there are many challenges associated with its promotion. Scientists are more frequently engaging with nonscientific audiences through public outreach activities and with increasing support from institutions and professional societies. This is especially true regarding microbiologists and other related professionals since the start of the global 2019 coronavirus disease pandemic heightened the need to convey novel and rapidly evolving scientific information to lay audiences. The means by which professionals engage with these audiences affect the efficacy of the relay of scientific information. One method of engagement is the "ambassador approach," which aims to establish dialogue among different groups of people and scientists. In this perspective article, we discuss this approach, highlighting activities for the promotion of science literacy organized by the American Society for Microbiology Ambassador Program and similar programs of other scientific societies. We discuss the benefits and challenges of implementing an ambassador approach, propose potential improvements that could be made to existing programs promoting science literacy, and ultimately advocate for increased implementation of science ambassador programs.

5.
PLoS One ; 17(5): e0267881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551553

RESUMO

In commercial large-scale aquaria, controlling levels of nitrogenous compounds is essential for macrofauna health. Naturally occurring bacteria are capable of transforming toxic nitrogen species into their more benign counterparts and play important roles in maintaining aquaria health. Nitrification, the microbially-mediated transformation of ammonium and nitrite to nitrate, is a common and encouraged process for management of both commercial and home aquaria. A potentially competing microbial process that transforms ammonium and nitrite to dinitrogen gas (anaerobic ammonium oxidation [anammox]) is mediated by some bacteria within the phylum Planctomycetes. Anammox has been harnessed for nitrogen removal during wastewater treatment, as the nitrogenous end product is released into the atmosphere rather than in aqueous discharge. Whether anammox bacteria could be similarly utilized in commercial aquaria is an open question. As a first step in assessing the viability of this practice, we (i) characterized microbial communities from water and sand filtration systems for four habitats at the Tennessee Aquarium and (ii) examined the abundance and anammox potential of Planctomycetes using culture-independent approaches. 16S rRNA gene amplicon sequencing revealed distinct, yet stable, microbial communities and the presence of Planctomycetes (~1-15% of library reads) in all sampled habitats. Preliminary metagenomic analyses identified the genetic potential for multiple complete nitrogen metabolism pathways. However, no known genes diagnostic for the anammox reaction were found in this survey. To better understand the diversity of this group of bacteria in these systems, a targeted Planctomycete-specific 16S rRNA gene-based PCR approach was used. This effort recovered amplicons that share <95% 16S rRNA gene sequence identity to previously characterized Planctomycetes, suggesting novel strains within this phylum reside within aquaria.


Assuntos
Compostos de Amônio , Microbiota , Compostos de Amônio/metabolismo , Anaerobiose , Bactérias , Reatores Biológicos/microbiologia , Microbiota/genética , Nitritos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Planctomicetos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
6.
mSphere ; 7(2): e0093021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35311569

RESUMO

Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus. Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in "spontaneous" prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>105 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of "spontaneous" prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus. We found that loss of one or more distinct plasmids-which we show carry genes ubiquitous in the world's oceans-resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems.


Assuntos
Bacteriófagos , Rhodobacteraceae , Bacteriófagos/genética , Ecossistema , Plasmídeos/genética , Prófagos/genética , Rhodobacteraceae/genética
7.
ISME J ; 14(7): 1688-1700, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242083

RESUMO

Temperate phages engage in long-term associations with their hosts that may lead to mutually beneficial interactions, of which the full extent is presently unknown. Here, we describe an environmentally relevant model system with a single host, a species of the Roseobacter clade of marine bacteria, and two genetically similar phages (ɸ-A and ɸ-D). Superinfection of a ɸ-D lysogenized strain (CB-D) with ɸ-A particles resulted in a lytic infection, prophage induction, and conversion of a subset of the host population, leading to isolation of a newly ɸ-A lysogenized strain (CB-A). Phenotypic differences, predicted to result from divergent lysogenic-lytic switch mechanisms, are evident between these lysogens, with CB-A displaying a higher incidence of spontaneous induction. Doubling times of CB-D and CB-A in liquid culture are 75 and 100 min, respectively. As cell cultures enter stationary phase, CB-A viable counts are half of CB-D. Consistent with prior evidence that cell lysis enhances biofilm formation, CB-A produces twice as much biofilm biomass as CB-D. As strains are susceptible to infection by the opposing phage type, co-culture competitions were performed to test fitness effects. When grown planktonically, CB-A outcompeted CB-D three to one. Yet, during biofilm growth, CB-D outcompeted CB-A three to one. These results suggest that genetically similar phages can have divergent influence on the competitiveness of their shared hosts in distinct environmental niches, possibly due to a complex form of phage-mediated allelopathy. These findings have implications for enhanced understanding of the eco-evolutionary dynamics of host-phage interactions that are pervasive in all ecosystems.


Assuntos
Bacteriófagos , Roseobacter , Bacteriófagos/genética , Ecossistema , Lisogenia , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA